Learning an Outlier-Robust Kalman Filter

We introduce a modified Kalman filter that performs robust, real-time outlier detection, without the need for manual parameter tuning by the user. Systems that rely on high quality sensory data (for instance, robotic systems) can be sensitive to data containing outliers. The standard Kalman filter is not robust to outliers, and other variations of the Kalman filter have been proposed to overcome this issue. However, these methods may require manual parameter tuning, use of heuristics or complicated parameter estimation procedures. Our Kalman filter uses a weighted least squares-like approach by introducing weights for each data sample. A data sample with a smaller weight has a weaker contribution when estimating the current time step's state. Using an incremental variational Expectation-Maximization framework, we learn the weights and system dynamics. We evaluate our Kalman filter algorithm on data from a robotic dog.

[1]  W. R. Buckland,et al.  Contributions to Probability and Statistics , 1960 .

[2]  J. Tukey A survey of sampling from contaminated distributions , 1960 .

[3]  A. Jazwinski Stochastic Processes and Filtering Theory , 1970 .

[4]  H. Sorenson,et al.  Recursive bayesian estimation using gaussian sums , 1971 .

[5]  C. Masreliez Approximate non-Gaussian filtering with linear state and observation relations , 1975 .

[6]  B. Tapley,et al.  Adaptive sequential estimation with unknown noise statistics , 1976 .

[7]  Joel M. Morris,et al.  The Kalman filter: A robust estimator for some classes of linear quadratic problems , 1976, IEEE Trans. Inf. Theory.

[8]  R. Martin,et al.  Robust bayesian estimation for the linear model and robustifying the Kalman filter , 1977 .

[9]  D. Rubin,et al.  Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .

[10]  Frederick R. Forst,et al.  On robust estimation of the location parameter , 1980 .

[11]  M. West Robust Sequential Approximate Bayesian Estimation , 1981 .

[12]  M. West Aspects of recursive Bayesian estimation , 1982 .

[13]  A F Smith,et al.  Monitoring renal transplants: an application of the multiprocess Kalman filter. , 1983, Biometrics.

[14]  Anne Lohrli Chapman and Hall , 1985 .

[15]  G. Kitagawa Non-Gaussian State—Space Modeling of Nonstationary Time Series , 1987 .

[16]  Harold W. Sorenson,et al.  Recursive Bayesian estimation using piece-wise constant approximations , 1988, Autom..

[17]  Richard J. Meinhold,et al.  Robustification of Kalman Filter Models , 1989 .

[18]  H. J. Arnold Introduction to the Practice of Statistics , 1990 .

[19]  S. Mitter,et al.  Robust Recursive Estimation in the Presence of Heavy-Tailed Observation Noise , 1994 .

[20]  David B. Dunson,et al.  Bayesian Data Analysis , 2010 .

[21]  David Lindley,et al.  Introduction to the Practice of Statistics , 1990, The Mathematical Gazette.

[22]  Geoffrey E. Hinton,et al.  Parameter estimation for linear dynamical systems , 1996 .

[23]  G. Kitagawa Smoothness priors analysis of time series , 1996 .

[24]  Michael I. Jordan Learning in Graphical Models , 1999, NATO ASI Series.

[25]  Geoffrey E. Hinton,et al.  A View of the Em Algorithm that Justifies Incremental, Sparse, and other Variants , 1998, Learning in Graphical Models.

[26]  W. Ames Mathematics in Science and Engineering , 1999 .

[27]  Zeljko M. Durovic,et al.  Robust estimation with unknown noise statistics , 1999, IEEE Trans. Autom. Control..

[28]  H. Attias Independent Component Analysis: ICA, graphical models and variational methods , 2001 .

[29]  Matthew J. Beal,et al.  Graphical Models and Variational Methods , 2001 .

[30]  Thiagalingam Kirubarajan,et al.  Estimation with Applications to Tracking and Navigation , 2001 .

[31]  M. Opper,et al.  Advanced mean field methods: theory and practice , 2001 .

[32]  T. Başar,et al.  A New Approach to Linear Filtering and Prediction Problems , 2001 .

[33]  B. Ripley,et al.  Robust Statistics , 2018, Encyclopedia of Mathematical Geosciences.

[34]  Shing-Chow Chan,et al.  A new robust Kalman filter algorithm under outliers and system uncertainties , 2005, 2005 IEEE International Symposium on Circuits and Systems.

[35]  Stefan Schaal,et al.  Bayesian regression with input noise for high dimensional data , 2006, ICML.

[36]  Stefan Schaal,et al.  Automatic Outlier Detection: A Bayesian Approach , 2007, Proceedings 2007 IEEE International Conference on Robotics and Automation.