Fuzzy fractals and hyperfractals

In analogy of the relationship between crisp multivalued fractals and the associated hyperfractals studied recently by ourselves, the properties of fuzzy fractals are investigated by means of fuzzy hyperfractals. In particular, we focus on their address structure, Hausdorff dimension and visualization. Two illustrative examples are supplied.

[1]  Robert LIN,et al.  NOTE ON FUZZY SETS , 2014 .

[2]  R. Uthayakumar,et al.  Analysis on Fractals in Intuitionistic Fuzzy Metric Spaces , 2012 .

[3]  F. Smithies Linear Operators , 2019, Nature.

[4]  S. Krantz Fractal geometry , 1989 .

[5]  Shouchuan Hu,et al.  Handbook of Multivalued Analysis: Volume I: Theory , 1997 .

[6]  P. Kloeden,et al.  Metric Spaces Of Fuzzy Sets Theory And Applications , 1975 .

[7]  Dorel Miheţ On Fuzzy -Contractive Mappings in Fuzzy Metric Spaces , 2007 .

[8]  M. Puri,et al.  Differentials of fuzzy functions , 1983 .

[9]  Edward R. Vrscay,et al.  Fractal-Based Methods in Analysis , 2011 .

[10]  S. Kang,et al.  Approximating Fixed Points of Nonexpansive Mappings in Hyperspaces , 2007 .

[11]  Heriberto Román-Flores,et al.  The compactness of E(X) , 1998 .

[12]  R. A. Vitale,et al.  Polygonal approxi-mation of plane convex bodies , 1975 .

[13]  Andrzej Bargiela,et al.  Fuzzy fractal dimensions and fuzzy modeling , 2003, Inf. Sci..

[14]  A. Petruşel,et al.  Multivalued fractals and generalized multivalued contractions , 2008 .

[15]  Edward R. Vrscay,et al.  Iterated fuzzy set systems: A new approach to the inverse problem for fractals and other sets , 1992 .

[16]  Jan Andres,et al.  Topological Fixed Point Principles for Boundary Value Problems , 2003 .

[17]  E. Michael Topologies on spaces of subsets , 1951 .

[18]  E. Vrscay,et al.  Contractive multifunctions, fixed point inclusions and iterated multifunction systems , 2006 .

[19]  R. Uthayakumar,et al.  Hutchinson-Barnsley Operator in Fuzzy Metric Spaces , 2011 .

[20]  P. Kloeden,et al.  Metric spaces of fuzzy sets , 1990 .

[21]  J. Andres,et al.  Dimension of hyperfractals , 2013 .

[22]  A. Schief Self-similar sets in complete metric spaces , 1996 .

[23]  R. Uthayakumar,et al.  Multivalued Fractals in Fuzzy Metric Spaces , 2011 .

[24]  R. Schneider Convex Bodies: The Brunn–Minkowski Theory: Minkowski addition , 1993 .

[25]  John E. Hutchinson,et al.  A FRACTAL VALUED RANDOM ITERATION ALGORITHM AND FRACTAL HIERARCHY , 2003 .

[26]  Gerald Beer,et al.  Topologies on Closed and Closed Convex Sets , 1993 .

[27]  Jan Andres,et al.  Metric and Topological Multivalued Fractals , 2004, Int. J. Bifurc. Chaos.

[28]  K.K. Majumdar,et al.  Fuzzy fractals and fuzzy turbulence , 2004, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[29]  Jan Andres,et al.  Multivalued Fractals and Hyperfractals , 2012, Int. J. Bifurc. Chaos.

[30]  W. G. Dotson,et al.  Approximating fixed points of nonexpansive mappings , 1974 .

[31]  Michael F. Barnsley,et al.  Fractals everywhere , 1988 .

[32]  From iterated function systems to iterated multifunction systems , 2008 .

[34]  J. Schwartz,et al.  Linear Operators. Part I: General Theory. , 1960 .

[35]  Jan Andres,et al.  Visualization of Hyperfractals , 2013, Int. J. Bifurc. Chaos.

[36]  丸山 徹 Convex Analysisの二,三の進展について , 1977 .

[37]  R. Uthayakumar,et al.  ANALYSIS ON FRACTALS IN FUZZY METRIC SPACES , 2011 .

[38]  Jian-zhong Xiao,et al.  Iterated function systems and attractors in the KM fuzzy metric spaces , 2015, Fuzzy Sets Syst..

[39]  Shouchuan Hu,et al.  Handbook of multivalued analysis , 1997 .