Landscape for semiconductor analysis: Issues and challenges

This paper summarizes the landscape for semiconductor analysis. High-resolution imaging and microanalysis are discussed first because they are used in most of the core process technologies that enable device scaling beyond the current 30 nm technology node. Key technology for analysis of dopant distribution, contamination, and strain is reviewed from the viewpoints of sensitivity, spatial resolution, contamination level, and defect size. The final section describes microscopy based on in situ techniques, which can play an important role in developing extended complementary metal-oxide-semiconductor (CMOS) and beyond CMOS as well as play a role in understanding the fundamental physics of new and emerging semiconductor devices. Within each technology area, future directions that are being driven by new materials and processes are briefly outlined.

[1]  A. Benninghoven,et al.  Secondary ion mass spectrometry : SIMS V : proceedings of the fifth international conference, Washington, DC, September 30-October 4, 1985 , 1986 .

[2]  P. Ziemann,et al.  Effects of particle shape and chemical composition on the electron impact charging properties of submicron inorganic particles , 1996 .

[3]  M. Stolzenburg,et al.  Inversion of ultrafine condensation nucleus counter pulse height distributions to obtain nanoparticle (∼3–10 nm) size distributions , 1998 .

[4]  A. Benninghoven,et al.  Secondary ion mass spectrometry depth profiling of ultralow-energy ion implants: Problems and solutions , 1998 .

[5]  Clayton C. Williams,et al.  TWO-DIMENSIONAL DOPANT PROFILING BY SCANNING CAPACITANCE MICROSCOPY , 1999 .

[6]  H. Engelmann,et al.  Application of analytical TEM for failure analysis of semiconductor device structures , 2000 .

[7]  G. Hilton,et al.  The Development of Microcalorimeter EDS Arrays , 2002, Microscopy and Microanalysis.

[8]  Yoshio Kikuchi,et al.  Quantitative ultra shallow dopant profile measurement by scanning capacitance microscope , 2002 .

[9]  K. Harada,et al.  Double-biprism electron interferometry , 2004 .

[10]  G. Park,et al.  High-resolution strain measurement in shallow trench isolation structures using dynamic electron diffraction , 2004 .

[11]  Andreas Lenk,et al.  2D-mapping of dopant distribution in deep sub micron CMOS devices by electron holography using adapted FIB-preparation. , 2005, Journal of electron microscopy.

[12]  Leslie J. Allen,et al.  Three-dimensional imaging of individual hafnium atoms inside a semiconductor device , 2005 .

[13]  Kah-Wee Ang,et al.  Lattice strain analysis of transistor structures with silicon–germanium and silicon–carbon source∕drain stressors , 2005 .

[14]  D. Ph.,et al.  Failure Analysis System for Submicron Semiconductor Devices , 2006 .

[15]  T. Hattori,et al.  Detection of 30–40-nm Particles on Bulk-Silicon and SOI Wafers Using Deep UV Laser Scattering , 2006, IEEE Transactions on Semiconductor Manufacturing.

[16]  D. Van dyck,et al.  Atomic resolution electron tomography: a dream? , 2006 .

[17]  D. Muller,et al.  Three-dimensional imaging of nonspherical silicon nanoparticles embedded in silicon oxide by plasmon tomography , 2006 .

[18]  D. Kim,et al.  A direct observation on the structure evolution of memory-switching phenomena using in-situ TEM , 2006, 2009 Symposium on VLSI Technology.

[19]  K. Chang,et al.  Silicon nanocrystal non-volatile memory for embedded memory scaling , 2007, Microelectron. Reliab..

[20]  Brian P. Gorman,et al.  Atom Probe Tomography of Electronic Materials , 2007 .

[21]  Juan Cheng,et al.  Direct comparison of Au3+ and C60+ cluster projectiles in SIMS molecular depth profiling , 2007, Journal of the American Society for Mass Spectrometry.

[22]  T. Kezai,et al.  New Approach for Improvement of Secondary Ion Mass Spectrometry Profile Analysis , 2007 .

[23]  Eunha Lee,et al.  Investigations of semiconductor devices using SIMS; diffusion, contamination, process control , 2008 .

[24]  I. Gestmann,et al.  Advances in Low and Ultra-Low Energy, High-Resolution SEM , 2008, Microscopy and Microanalysis.

[25]  Dmitri O. Klenov,et al.  Strain relaxation in transistor channels with embedded epitaxial silicon germanium source/drain , 2008 .

[26]  K. Kimoto,et al.  Decisive factors for realizing atomic-column resolution using STEM and EELS . , 2008, Micron.

[27]  S. Kawata,et al.  Tip-enhanced Raman spectroscopy for nanoscale strain characterization , 2009, Analytical and bioanalytical chemistry.

[28]  A. Nishida,et al.  Dopant distributions in n-MOSFET structure observed by atom probe tomography. , 2009, Ultramicroscopy.

[29]  S. Kamohara,et al.  Study on channel depletion in metal‐oxide‐semiconductor field effect transistor using top‐view imaging through scanning capacitance microscopy , 2009 .

[30]  F. Meyer Zu Heringdorf,et al.  Electromigration and potentiometry measurements of single-crystalline Ag nanowires under UHV conditions , 2009, Journal of physics. Condensed matter : an Institute of Physics journal.

[31]  Manfred Horstmann,et al.  Understanding Strain-Induced Drive-Current Enhancement in Strained-Silicon n-MOSFET and p-MOSFET , 2010, IEEE Transactions on Electron Devices.

[32]  J.P. Liu,et al.  Quantitative strain analysis for advanced CMOS technology by Nano Beam Diffraction , 2010, 2010 17th IEEE International Symposium on the Physical and Failure Analysis of Integrated Circuits.

[33]  Baptiste Gault,et al.  Spatial Resolution in Atom Probe Tomography , 2010, Microscopy and Microanalysis.

[34]  Moon J. Kim,et al.  DIRECT TWO-DIMENSIONAL ELECTRICAL MEASUREMENT USING POINT PROBING FOR DOPING AREA IDENTIFICATION OF NANODEVICE IN TEM , 2010 .

[35]  Jae Hyuck Jang,et al.  Atomic structure of conducting nanofilaments in TiO2 resistive switching memory. , 2010, Nature nanotechnology.

[36]  J. E. Barth,et al.  Design of an aberration corrected low-voltage SEM. , 2010, Ultramicroscopy.

[37]  Yves Wouters,et al.  Microstructure and texture analysis of advanced copper using electron backscattered diffraction and scanning transmission electron microscopy , 2010, Scanning Microscopies.

[38]  R. Wallace,et al.  An in situ examination of atomic layer deposited alumina/InAs"100… interfaces , 2010 .

[39]  Sang-jun Choi,et al.  In Situ Observation of Voltage‐Induced Multilevel Resistive Switching in Solid Electrolyte Memory , 2011, Advanced materials.

[40]  R. Wolters,et al.  Growth Kinetics and Oxidation Mechanism of ALD TiN Thin Films Monitored by In Situ Spectroscopic Ellipsometry , 2011 .

[41]  P. Munroe,et al.  Focused ion beam sample preparation for atom probe tomography , 2010 .

[42]  Pinshane Y. Huang,et al.  Grains and grain boundaries in single-layer graphene atomic patchwork quilts , 2010, Nature.

[43]  Gerald A. Edgar,et al.  Problems and Solutions , 2013, Am. Math. Mon..