Toward a New Generation of Electrically Controllable Hygromorphic Soft Actuators

An innovative processing strategy for fabricating soft structures that possess electric- and humidity-driven active/passive actuation capabilities along with touch- and humidity-sensing properties is reported. The intrinsically multifunctional material comprises an active thin layer of poly(3,4-ethylenedioxythiophene):poly-(styrene sulfonate) in a double-layered structure with a silicone elastomer and provides an opportunity toward developing a new class of smart structures for soft robotics.

[1]  S. Wereley,et al.  soft matter , 2019, Science.

[2]  T. Otero,et al.  Mechanical awareness from sensing artificial muscles: Experiments and modeling , 2014 .

[3]  B. Mazzolai,et al.  Liquid single crystal elastomer/conducting polymer bilayer composite actuator: modelling and experiments , 2013 .

[4]  B. Mazzolai,et al.  Thin film free-standing PEDOT:PSS/SU8 bilayer microactuators , 2013 .

[5]  Hidenori Okuzaki,et al.  Humidity‐Sensitive Polypyrrole Films for Electro‐Active Polymer Actuators , 2013 .

[6]  B. Mazzolai,et al.  Patterned free-standing conductive nanofilms for ultraconformable circuits and smart interfaces. , 2013, ACS applied materials & interfaces.

[7]  T. Otero Biomimetic Conducting Polymers: Synthesis, Materials, Properties, Functions, and Devices , 2013 .

[8]  B. Mazzolai,et al.  Characterization of free-standing PEDOT:PSS/iron oxide nanoparticle composite thin films and application as conformable humidity sensors. , 2013, ACS applied materials & interfaces.

[9]  Paolo Dario,et al.  Ultra-thin conductive free-standing PEDOT/PSS nanofilms , 2011 .

[10]  W. Lövenich,et al.  PEDOT: Principles and Applications of an Intrinsically Conductive Polymer , 2010 .

[11]  Ronald F. Gibson,et al.  A review of recent research on mechanics of multifunctional composite materials and structures , 2010 .

[12]  Isao Shimoyama,et al.  Transparent conductive-polymer strain sensors for touch input sheets of flexible displays , 2010 .

[13]  M. C. Stuart,et al.  Emerging applications of stimuli-responsive polymer materials. , 2010, Nature materials.

[14]  Hiroki Suzuki,et al.  Electrically driven PEDOT/PSS actuators , 2009, Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring.

[15]  L. Mahadevan,et al.  Hygromorphs: from pine cones to biomimetic bilayers , 2009, Journal of The Royal Society Interface.

[16]  Giovanni Saggio,et al.  Piezoresistive behaviour of flexible PEDOT:PSS based sensors , 2009 .

[17]  I. Burgert,et al.  Actuation systems in plants as prototypes for bioinspired devices , 2009, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[18]  F. Carpi,et al.  Biomedical applications of electroactive polymer actuators , 2009 .

[19]  R. Elbaum,et al.  The Role of Wheat Awns in the Seed Dispersal Unit , 2007, Science.

[20]  Elisabeth Smela,et al.  Bending Actuators with Maximum Curvature and Force and Zero Interfacial Stress , 2007 .

[21]  G. Wallace,et al.  Fast trilayer polypyrrole bending actuators for high speed applications , 2006 .

[22]  S. Minko Responsive polymer materials : design and applications , 2006 .

[23]  Janet Braam,et al.  In touch: plant responses to mechanical stimuli. , 2004, The New phytologist.

[24]  María Teresa Cortés,et al.  Artificial Muscles with Tactile Sensitivity , 2003 .

[25]  E. Smela,et al.  Microfabricating conjugated polymer actuators. , 2000, Science.

[26]  Hidenori Okuzaki,et al.  Electrically Driven Polypyrrole Film Actuator Working in Air , 1999 .

[27]  Hidenori Okuzaki,et al.  Theoretical study of sorption‐induced bending of polypyrrole films , 1998 .

[28]  C. Dawson,et al.  How pine cones open , 1997, Nature.

[29]  Marco-A. De Paoli,et al.  A solid state artificial muscle based on polypyrrole and a solid polymeric electrolyte working in air , 1997 .