Evaluation of C-band SAR polarimetric parameters for discrimination of first-year sea ice types

In this study, the classification potential of polarimetric parameters derived after Cloude–Pottier decomposition, Touzi decomposition, Freeman–Durden decomposition, normalized radar cross section measurements, phase differences, and statistical synthetic aperture radar correlation measures is evaluated by relating them to three pre-identified sea ice types and wind-roughened open water. A combined approach that constitutes a visual inspection of estimated probability densities of the polarimetric parameters and quantitative analysis using supervised classifications (k means and maximum likelihood) is adopted. Polarimetric parameters are iteratively combined in pairs and triplets to test for their ice type discrimination potential. Sensitivity of polarimetric parameters to radar incidence angle is also examined. Our results demonstrated strong but variable sensitivity of polarimetric parameters to different ice types, which was dependent on radar incidence angle. Results of parameter evaluation demonstrated that no single parameter discriminates significantly (>60%) between all the ice types considered in the study. Combining two low correlated parameters increased the classification accuracy by 10%–22%. Combining the third polarimetric parameter did not necessarily improve the classification results. However, the best classification results were achieved using a combination of three parameters.

[1]  Thierry Ranchin,et al.  Combined extraction of high spatial resolution wind speed and wind direction from SAR images: A new approach using wavelet transform , 2002 .

[2]  Seiho Uratsuka,et al.  Observation of sea-ice thickness in the sea of Okhotsk by using dual-frequency and fully polarimetric airborne SAR (pi-SAR) data , 2005, IEEE Transactions on Geoscience and Remote Sensing.

[3]  Ridha Touzi,et al.  Target Scattering Decomposition in Terms of Roll-Invariant Target Parameters , 2007, IEEE Transactions on Geoscience and Remote Sensing.

[4]  M. Simila,et al.  The identification of the deformed sea ice fields from ERS-1 SAR image by wavelets , 1995, 1995 International Geoscience and Remote Sensing Symposium, IGARSS '95. Quantitative Remote Sensing for Science and Applications.

[5]  Eric Rignot,et al.  Identification of sea ice types in spaceborne synthetic aperture radar data , 1992 .

[6]  J. J. van der Sanden,et al.  Anticipated applications potential of RADARSAT-2 data , 2004 .

[7]  C. Bertoia,et al.  Study of Multi-Polarization C-Band Backscatter Signatures for Arctic Sea Ice Mapping with Future Satellite SAR , 2001 .

[8]  Laurent Ferro-Famil,et al.  Unsupervised classification of multifrequency and fully polarimetric SAR images based on the H/A/Alpha-Wishart classifier , 2001, IEEE Trans. Geosci. Remote. Sens..

[9]  Jan Askne,et al.  Polarimetric L- and C-band SAR signatures of Baltic Sea ice observed during EMAC-95 , 1997 .

[10]  C. W. Therrien,et al.  Decision, Estimation and Classification: An Introduction to Pattern Recognition and Related Topics , 1989 .

[11]  E. Pottier,et al.  Unsupervised Wishart Classifications of Sea-Ice using Entropy, Alpha and Anisotropy decompositions , 2003 .

[12]  Simon Yueh,et al.  Evolution in polarimetric signatures of thin saline ice under constant growth , 1997 .

[13]  W. Dierking,et al.  SAR polarimetry for sea ice classification , 2003 .

[14]  Russell G. Congalton,et al.  A review of assessing the accuracy of classifications of remotely sensed data , 1991 .

[15]  Eric Pottier,et al.  An entropy based classification scheme for land applications of polarimetric SAR , 1997, IEEE Trans. Geosci. Remote. Sens..

[17]  M. Lundhaug,et al.  ERS SAR studies of sea ice signatures in the Pechora Sea and Kara Sea region , 2002 .

[18]  Stephen L. Durden,et al.  A three-component scattering model for polarimetric SAR data , 1998, IEEE Trans. Geosci. Remote. Sens..

[19]  M. Makynen,et al.  Investigation of the Microwave Signatures of the Baltic Sea Ice , 2007 .

[20]  B. Scheuchl,et al.  Automated sea ice classification using spaceborne polarimetric SAR data , 2001, IGARSS 2001. Scanning the Present and Resolving the Future. Proceedings. IEEE 2001 International Geoscience and Remote Sensing Symposium (Cat. No.01CH37217).

[21]  Philippe Paillou,et al.  Effect of multiple scattering on the phase signature of wet subsurface structures: applications to polarimetric L- and C-band SAR , 2005, IEEE Transactions on Geoscience and Remote Sensing.

[22]  T. M. Lillesand,et al.  Remote Sensing and Image Interpretation , 1980 .

[23]  Juha A. Karvonen,et al.  Baltic Sea ice SAR segmentation and classification using modified pulse-coupled neural networks , 2004, IEEE Transactions on Geoscience and Remote Sensing.

[24]  Son V. Nghiem,et al.  Thin saline ice thickness retrieval using time-series C-band polarimetric radar measurements , 1998, IEEE Trans. Geosci. Remote. Sens..

[25]  Son V. Nghiem,et al.  The role of snow on the thermal dependence of microwave backscatter over sea ice , 1999 .

[26]  J. Yackel,et al.  Sea ice type and open water discrimination using dual co-polarized C-band SAR , 2009 .

[27]  Ian Joughin,et al.  On the response of polarimetric synthetic aperture radar signatures at 24-cm wavelength to sea ice thickness in Arctic leads , 1995 .

[28]  A. Carlstrom,et al.  Validation of backscatter models for level and deformed sea-ice in ERS-l SAR images , 1995 .

[29]  M. Hallikainen,et al.  Investigation of C- and X-band backscattering signatures of Baltic Sea ice , 2004 .

[30]  Martti Hallikainen,et al.  C-Band SAR Based Estimation of Baltic Sea Ice Thickness Distributions , 2006, 2006 IEEE International Symposium on Geoscience and Remote Sensing.

[31]  Carlos López-Martínez,et al.  An evaluation of PolSAR speckle filters , 2009, 2009 IEEE International Geoscience and Remote Sensing Symposium.

[32]  C. E. Olson,et al.  Normality Assumptions In Supervised Classification Of Remotely Sensed Terrain Data , 1989, 12th Canadian Symposium on Remote Sensing Geoscience and Remote Sensing Symposium,.

[33]  B. Scheuchl,et al.  Classification of fully polarimetric single- and dual-frequency SAR data of sea ice using the Wishart statistics , 2005 .

[34]  Eric Rignot,et al.  Potential Applications of Polarimetry to the Classification of Sea Ice , 2013 .

[35]  Martin Gade,et al.  Remote Sensing of the European Seas , 2008 .

[36]  David G. Barber,et al.  Melt ponds on sea ice in the Canadian Archipelago: 2. On the use of RADARSAT‐1 synthetic aperture radar for geophysical inversion , 2000 .

[37]  Irena Hajnsek,et al.  Model-based classification of polarimetric SAR sea ice data , 2002, IEEE International Geoscience and Remote Sensing Symposium.