Temperature dependent spectral properties of type-I and quasi type-II CdSe/CdS dot-in-rod nanocrystals.

We investigated systematically the temperature dependence of the spectral properties such as the band gap, bandwidth and fluorescence intensity of CdSe/CdS dot-in-rod nanocrystals. These asymmetry nanoparticles were synthesized by seeded growth techniques with band alignment of the type-I and quasi type-II with initial core sizes of 3.3 and 2.3 nm, respectively. With increasing temperature the band gap decreases and bandwidth increases, largely due to exciton-phonon scattering. Anomalous variations of the band gap and bandwidth were observed at 200-240 K, and the variations are attributed to the anisotropic strain in the CdSe/CdS interface due to temperature dependent lattice mismatch. The integrated intensity of fluorescence shows two variation regimes. In the low temperature regime, the intensity remained roughly constant due to the temperature dependent carrier mobility and trapping by the defect states in the CdS shell. However, in the higher temperature regime, the intensity decreased quickly due to thermal/phonon assisted escape from the CdSe dot. The barrier depths are estimated to be about 557 and 285 meV for type-I and quasi type-II samples, respectively.

[1]  Lin-wang Wang,et al.  Electronic structures of the CdSe/CdS core-shell nanorods. , 2010, ACS nano.

[2]  A. Kelley Electron−Phonon Coupling in CdSe Nanocrystals , 2010 .

[3]  G. Scholes,et al.  Exciton-phonon coupling and disorder in the excited states of CdSe colloidal quantum dots. , 2006, The Journal of chemical physics.

[4]  S. Takeuchi,et al.  Anisotropic thermal expansion in wurtzite-type crystals , 2000 .

[5]  Louis E. Brus,et al.  Nucleation and Growth of CdSe on ZnS Quantum Crystallite Seeds and Vice Versa, in Inverse Micelle Media , 1990 .

[6]  W. Shiu,et al.  Effects of interdiffusion-induced strain in Ga/sub 0.51/In/sub 0.49/P-GaAs intermixed quantum wells , 1998 .

[7]  M. Steigerwald,et al.  Ligand Control of Growth, Morphology, and Capping Structure of Colloidal CdSe Nanorods , 2007 .

[8]  H. Koinuma,et al.  Temperature quenching of exciton luminescence intensity in ZnO/(Mg,Zn)O multiple quantum wells , 2003 .

[9]  A. Rogach,et al.  Monitoring surface charge movement in single elongated semiconductor nanocrystals. , 2004, Physical review letters.

[10]  David A. B. Miller,et al.  Theory of the linear and nonlinear optical properties of semiconductor microcrystallites. , 1987, Physical review. B, Condensed matter.

[11]  P. J. van der Zaag,et al.  The effect of temperature and dot size on the spectral properties of colloidal InP/ZnS core-shell quantum dots. , 2009, ACS nano.

[12]  G. Scholes,et al.  Energetics of Photoinduced Electron-Transfer Reactions Decided by Quantum Confinement , 2007 .

[13]  J. Vela,et al.  "Giant" multishell CdSe nanocrystal quantum dots with suppressed blinking. , 2008, Journal of the American Chemical Society.

[14]  D V Talapin,et al.  Polarized‐Light‐Emitting Quantum‐Rod Diodes , 2005, Advanced materials.

[15]  Dmitri V Talapin,et al.  Seeded growth of highly luminescent CdSe/CdS nanoheterostructures with rod and tetrapod morphologies. , 2007, Nano letters.

[16]  Duncan W. McBranch,et al.  Electron and hole relaxation pathways in semiconductor quantum dots , 1999 .

[17]  Uri Banin,et al.  ZnSe quantum dots within CdS nanorods: a seeded-growth type-II system. , 2008, Small.

[18]  Y. P. Varshni Temperature dependence of the energy gap in semiconductors , 1967 .

[19]  G. Scholes,et al.  Temperature and solvent dependence of CdSe/CdTe heterostructure nanorod spectra. , 2009, The Journal of chemical physics.

[20]  A Paul Alivisatos,et al.  From artificial atoms to nanocrystal molecules: preparation and properties of more complex nanostructures. , 2009, Annual review of physical chemistry.

[21]  Tihana Mirkovic,et al.  Emergent Properties Resulting from Type‐II Band Alignment in Semiconductor Nanoheterostructures , 2011, Advanced materials.

[22]  Lee,et al.  Luminescence linewidths of excitons in GaAs quantum wells below 150 K. , 1986, Physical review. B, Condensed matter.

[23]  Zheng,et al.  Carrier relaxation and thermal activation of localized excitons in self-organized InAs multilayers grown on GaAs substrates. , 1996, Physical review. B, Condensed matter.

[24]  B. Nag Hot electron mobility in CdS , 1972 .

[25]  G. Rainò,et al.  Probing the wave function delocalization in CdSe/CdS dot-in-rod nanocrystals by time- and temperature-resolved spectroscopy. , 2011, ACS nano.

[26]  Murray,et al.  Fluorescence-line narrowing in CdSe quantum dots: Surface localization of the photogenerated exciton. , 1994, Physical review. B, Condensed matter.

[27]  Liang Li,et al.  Core/Shell semiconductor nanocrystals. , 2009, Small.

[28]  J. Jasieniak,et al.  Three-Pulse Photon Echo Peak Shift Measurements of Capped CdSe Quantum Dots , 2010 .

[29]  D. Miller,et al.  Fast escape of photocreated carriers out of shallow quantum wells , 1991 .

[30]  R. Hochstrasser,et al.  Nonlinear spectroscopy and picosecond transient grating study of colloidal gold , 1985 .

[31]  A. Alivisatos,et al.  Continuous distribution of emission states from single CdSe/ZnS quantum dots. , 2006, Nano letters.

[32]  R. Leonelli,et al.  Carrier thermal escape in families of InAs/InP self-assembled quantum dots , 2009, 0910.0480.

[33]  Weidong Yang,et al.  Effect of carrier emission and retrapping on luminescence time decays in InAs/GaAs quantum dots , 1997 .

[34]  Weidong Yang,et al.  Shape control of CdSe nanocrystals , 2000, Nature.

[35]  Oliver Benson,et al.  Highly Emissive Colloidal CdSe/CdS Heterostructures of Mixed Dimensionality , 2003 .

[36]  A. Zunger,et al.  Prediction of a strain-induced conduction-band minimum in embedded quantum dots , 1998, cond-mat/9801191.

[37]  Mohamed Henini,et al.  Carrier thermal escape and retrapping in self-assembled quantum dots , 1999 .

[38]  W. Xu,et al.  Excitation-wavelength dependence of fluorescence intermittency in CdSe nanorods. , 2008, ACS nano.

[39]  U. Banin,et al.  Zero-Dimensional and Quasi One-Dimensional Effects in Semiconductor Nanorods , 2004 .

[40]  A. Rogach,et al.  Monitoring surface charge migration in the spectral dynamics of single CdSe/CdS nanodot/nanorod heterostructures , 2005 .

[41]  Bai Yang,et al.  Synthesis and Optical Properties of CdSe and CdSe/CdS Nanoparticles , 1999 .

[42]  L. Manna,et al.  Intrinsic optical nonlinearity in colloidal seeded grown CdSe/CdS nanostructures: Photoinduced screening of the internal electric field , 2008 .

[43]  Lin-Wang Wang,et al.  Colloidal nanocrystal heterostructures with linear and branched topology , 2004, Nature.

[44]  P. Y. Yu Resonant Raman study of LO + acoustic phonon modes in CdSe , 1976 .

[45]  J. Mort,et al.  Electron and Hole Transport in CdS Crystals , 1962 .

[46]  Gregory D. Scholes,et al.  Controlling the Optical Properties of Inorganic Nanoparticles , 2008 .

[47]  Roberto Cingolani,et al.  Temperature dependence of the photoluminescence properties of colloidal Cd Se ∕ Zn S core/shell quantum dots embedded in a polystyrene matrix , 2005 .

[48]  Andreas Kornowski,et al.  CdSe and CdSe/CdS nanorod solids. , 2004, Journal of the American Chemical Society.

[49]  T. Taguchi,et al.  Interface properties and the effect of strain of ZnSe/ZnS strained-layer superlattices , 1993 .

[50]  U. Banin,et al.  Multiexciton engineering in seeded core/shell nanorods: transfer from type-I to quasi-type-II regimes. , 2009, Nano letters.

[51]  M. O. Manasreh,et al.  Temperature dependence of the band gap of colloidal CdSe∕ZnS core/shell nanocrystals embedded into an ultraviolet curable resin , 2006 .

[52]  U. Banin,et al.  Determination of band offsets in heterostructured colloidal nanorods using scanning tunneling spectroscopy. , 2008, Nano letters.

[53]  Seoung-Hwan Park,et al.  Strain and piezoelectric potential effects on optical properties in CdSe/CdS core/shell quantum dots , 2011 .

[54]  Xueyan Liu,et al.  Temperature-Dependent Photoluminescence of CdSe-Core CdS/CdZnS/ZnS-Multishell Quantum Dots , 2009 .

[55]  Chennupati Jagadish,et al.  Temperature dependent photoluminescence in oxygen ion implanted and rapid thermally annealed ZnO/ZnMgO multiple quantum wells , 2007 .

[56]  Xiaobo Chen,et al.  Coherency Strain Effects on the Optical Response of Core/Shell Heteronanostructures , 2003 .

[57]  Dino Tonti,et al.  Temperature effects on the spectral properties of colloidal CdSe nanodots, nanorods, and tetrapods , 2007 .

[58]  U. Banin,et al.  Synthesis and Properties of CdSe/ZnS Core/Shell Nanorods , 2003 .

[59]  S. Ouendadji,et al.  Theoretical study of structural, electronic, and thermal properties of CdS, CdSe and CdTe compounds , 2011 .

[60]  E. Shevchenko,et al.  Using Shape to Control Photoluminescence from CdSe/CdS Core/Shell Nanorods , 2011 .

[61]  Shah,et al.  Nonequilibrium dynamics of hot carriers and hot phonons in CdSe and GaAs. , 1995, Physical review. B, Condensed matter.

[62]  K. O'Donnell,et al.  Temperature dependence of semiconductor band gaps , 1991 .

[63]  François Hache,et al.  Time‐resolved measurements of carrier recombination in experimental semiconductor‐doped glasses: Confirmation of the role of Auger recombination , 1993 .

[64]  D. Mcbranch,et al.  Auger-process-induced charge separation in semiconductor nanocrystals , 1997 .

[65]  Norris,et al.  Band-edge exciton in quantum dots of semiconductors with a degenerate valence band: Dark and bright exciton states. , 1996, Physical review. B, Condensed matter.

[66]  Temperature dependence of fundamental band gaps in group IV, III–V, and II–VI materials via a two-oscillator model , 2001 .

[67]  G. Scholes,et al.  Nanorod heterostructures showing photoinduced charge separation. , 2007, Small.

[68]  P. Chou,et al.  Recombination dynamics in CdTe/CdSe type-II quantum dots , 2008, Nanotechnology.

[69]  Monica Nadasan,et al.  Synthesis and micrometer-scale assembly of colloidal CdSe/CdS nanorods prepared by a seeded growth approach. , 2007, Nano letters.