Convergence Types and Rates in Generic Karhunen-Loève Expansions with Applications to Sample Path Properties

We establish a Karhunen-Loève expansion for generic centered, second order stochastic processes, which does not rely on topological assumptions. We further investigate in which norms the expansion converges and derive exact average rates of convergence for these norms. For Gaussian processes as well as for some other processes we additionally prove certain sharpness results in terms of the norm. Moreover, we investigate when the generic Karhunen-Loève expansion can be used to construct reproducing kernel Hilbert spaces (RKHSs) containing the paths of a version of the process. We further illustrate how the general theory can be applied, even in the absence of an explicitly known Karhunen-Loève expansion, by comparing the smoothness of the paths with the smoothness of the functions contained in the RKHS of the covariance function and by discussing some small ball probabilities. Key tools for our results are a recently shown generalization of Mercer’s theorem, spectral properties of the covariance integral operator, interpolation spaces of the real method, and compactness results for embeddings between classical function spaces.

[1]  F. Aurzada On the Lower Tail Probabilities of Some Random Sequences in lp , 2007 .

[2]  Robert E. Megginson An Introduction to Banach Space Theory , 1998 .

[3]  V. Herren Lévy-type Processes and Besov Spaces , 1997 .

[4]  M. Lifshits Lectures on Gaussian Processes , 2012 .

[5]  Robert Schaback,et al.  Interpolation of spatial data – A stochastic or a deterministic problem? , 2013, European Journal of Applied Mathematics.

[6]  Don R. Hush,et al.  Optimal Rates for Regularized Least Squares Regression , 2009, COLT.

[7]  Wenbo V. Li,et al.  Karhunen–Loeve expansions for the detrended Brownian motion , 2012 .

[8]  Une méthode élémentaire pour l'évaluation de petites boules browniennes , 1993 .

[9]  E. Novak,et al.  Tractability of Multivariate Problems , 2008 .

[10]  A. Pietsch Eigenvalues and S-Numbers , 1987 .

[11]  Andreas Christmann,et al.  Support vector machines , 2008, Data Mining and Knowledge Discovery Handbook.

[12]  M. Driscoll The reproducing kernel Hilbert space structure of the sample paths of a Gaussian process , 1973 .

[13]  Henryk Wozniakowski,et al.  Average case tractability of non-homogeneous tensor product problems , 2011, J. Complex..

[14]  G. Burton Sobolev Spaces , 2013 .

[15]  R. Adler An introduction to continuity, extrema, and related topics for general Gaussian processes , 1990 .

[16]  Milan Lukić Integrated Gaussian Processes and Their Reproducing Kernel Hilbert Spaces , 2004 .

[17]  J. Kuelbs,et al.  Metric entropy and the small ball problem for Gaussian measures , 1993 .

[18]  A. Berlinet,et al.  Reproducing kernel Hilbert spaces in probability and statistics , 2004 .

[19]  Data Approximation , 2017, Encyclopedia of GIS.

[20]  Ronald A. DeVore,et al.  Besov spaces on domains in , 1993 .

[21]  P. Deheuvels A Karhunen-Loeve expansion for a mean-centered Brownian bridge , 2007 .

[22]  Christoph Schwab,et al.  ANALYTIC REGULARITY AND POLYNOMIAL APPROXIMATION OF STOCHASTIC, PARAMETRIC ELLIPTIC MULTISCALE PDEs , 2013 .

[23]  Catherine E. Powell,et al.  An Introduction to Computational Stochastic PDEs , 2014 .

[24]  M. Yor,et al.  On quadratic functionals of the Brownian sheet and related processes , 2006 .

[25]  Jörg Neunhäuserer Funktionalanalysis , 2020, Mathematische Begriffe in Beispielen und Bildern.

[26]  Harry van Zanten,et al.  Information Rates of Nonparametric Gaussian Process Methods , 2011, J. Mach. Learn. Res..

[27]  Milan Lukić,et al.  Stochastic processes with sample paths in reproducing kernel Hilbert spaces , 2001 .

[28]  M. A. Lifshits,et al.  TRACTABILITY OF MULTI-PARAMETRIC EULER AND WIENER INTEGRATED PROCESSES , 2011, 1112.4248.

[29]  Qi-Man Shao,et al.  Small Ball Estimates for Gaussian Processes under Sobolev Type Norms , 1999 .

[30]  Jan Hannig,et al.  Integrated Brownian motions and exact L2-small balls , 2003 .

[31]  N. Dinculeanu Vector Integration and Stochastic Integration in Banach Spaces , 2000, Oxford Handbooks Online.

[32]  Paul Deheuvels,et al.  A Karhunen–Loeve decomposition of a Gaussian process generated by independent pairs of exponential random variables , 2008 .

[33]  Malcolm R Leadbetter,et al.  Stationary and Related Stochastic Processes: Sample Function Properties and Their Applications , 1967 .

[34]  Michel Loève,et al.  Probability Theory I , 1977 .

[35]  Jacques Istas,et al.  Karhunen–Loève expansion of spherical fractional Brownian motions , 2006 .

[36]  P. Wojtaszczyk Banach Spaces For Analysts: Preface , 1991 .

[37]  P. Deheuvels Karhunen-Loève expansions of mean-centered Wiener processes , 2006, math/0612693.

[38]  S. Janson Gaussian Hilbert Spaces , 1997 .

[39]  Guiqiao Xu Quasi-polynomial tractability of linear problems in the average case setting , 2014, J. Complex..

[40]  L. Tartar An Introduction to Sobolev Spaces and Interpolation Spaces , 2007 .

[41]  Carl E. Rasmussen,et al.  Gaussian processes for machine learning , 2005, Adaptive computation and machine learning.

[42]  P. Deheuvels,et al.  Karhunen-Loève Expansions for Weighted Wiener Processes and Brownian Bridges via Bessel Functions , 2003 .

[43]  Li Li,et al.  Support Vector Machines , 2015 .

[44]  H. Triebel,et al.  Function Spaces, Entropy Numbers, Differential Operators: Function Spaces , 1996 .

[45]  Holger Wendland,et al.  Scattered Data Approximation: Conditionally positive definite functions , 2004 .

[46]  S. Smale,et al.  ESTIMATING THE APPROXIMATION ERROR IN LEARNING THEORY , 2003 .

[47]  C. Tsallis Entropy , 2022, Thermodynamic Weirdness.

[48]  Herbert Meschkowski,et al.  Hilbertsche Räume mit Kernfunktion , 1962 .

[49]  A. I. Nazarov,et al.  Exact L2-small ball behavior of integrated Gaussian processes and spectral asymptotics of boundary value problems , 2004 .

[50]  M. Fowler,et al.  Function Spaces , 2022 .

[51]  J.-R. Pycke,et al.  U-statistics based on the Green's function of the Laplacian on the circle and the sphere , 2007 .

[52]  Klaus Ritter,et al.  Average-case analysis of numerical problems , 2000, Lecture notes in mathematics.

[53]  Vector Integration and Stochastic Integration in Banach Spaces: Dinculeanu/Vector , 2000 .

[54]  Marti A. Hearst Trends & Controversies: Support Vector Machines , 1998, IEEE Intell. Syst..

[55]  B. Carl,et al.  Entropy, Compactness and the Approximation of Operators , 1990 .

[56]  Christoph Schwab,et al.  Karhunen-Loève approximation of random fields by generalized fast multipole methods , 2006, J. Comput. Phys..

[57]  R. Schaback,et al.  Characterization and construction of radial basis functions , 2001 .

[58]  T. Gneiting,et al.  Matérn Cross-Covariance Functions for Multivariate Random Fields , 2010 .

[59]  Q. Shao,et al.  Gaussian processes: Inequalities, small ball probabilities and applications , 2001 .

[60]  M. Scheuerer Regularity of the sample paths of a general second order random field , 2010 .

[61]  Jin V. Liu Karhunen–Loève expansion for additive Brownian motions , 2013 .

[62]  S. Smale,et al.  Learning Theory Estimates via Integral Operators and Their Approximations , 2007 .

[63]  M. Barczy,et al.  Karhunen-Loève expansions of α-Wiener bridges , 2011 .

[64]  T. Broadbent Integral Transforms , 1952, Nature.

[65]  Sayan Mukherjee,et al.  Characterizing the Function Space for Bayesian Kernel Models , 2007, J. Mach. Learn. Res..

[66]  M. Solomjak,et al.  Spectral theory of selfadjoint operators in Hilbert space , 1987 .

[67]  加藤 納一,et al.  H. Cramer and M.R. Leadbetter: Stationary and Related Stochastic Processes (Sample Function Properties and Their Applications), John Wiley and Sons, Inc. New York, 1966, 348頁, 16×24cm, 5,000円. , 1969 .

[68]  Michael L. Stein,et al.  Interpolation of spatial data , 1999 .

[69]  E. Parzen An Approach to Time Series Analysis , 1961 .

[70]  C. Bennett,et al.  Interpolation of operators , 1987 .

[71]  Robert Schaback,et al.  Generalized Whittle–Matérn and polyharmonic kernels , 2013, Adv. Comput. Math..

[72]  Tosio Kato Perturbation theory for linear operators , 1966 .

[73]  Winfried Sickel,et al.  Sobolev spaces of fractional order, Nemytskij operators, and nonlinear partial differential equations , 1996, de Gruyter series in nonlinear analysis and applications.

[74]  M. Stein,et al.  A Bayesian analysis of kriging , 1993 .

[75]  A. Borovkov,et al.  On Small Deviations of Series of Weighted Random Variables , 2008 .

[76]  A. W. Vaart,et al.  Reproducing kernel Hilbert spaces of Gaussian priors , 2008, 0805.3252.

[77]  Ingo Steinwart Entropy of C(K)-Valued Operators , 2000 .

[78]  B. Roynette Mouvement brownien et espaces de besov , 1993 .

[79]  Ingo Steinwart,et al.  Mercer’s Theorem on General Domains: On the Interaction between Measures, Kernels, and RKHSs , 2012 .

[80]  R. DeVore,et al.  BESOV SPACES ON DOMAINS IN Rd , 1993 .

[81]  Nitakshi Goyal,et al.  General Topology-I , 2017 .

[82]  A. Yaglom Correlation Theory of Stationary and Related Random Functions I: Basic Results , 1987 .

[83]  Abubakr Gafar Abdalla,et al.  Probability Theory , 2017, Encyclopedia of GIS.

[84]  Hongjun Mao,et al.  Karhunen–Loève expansion for additive Slepian processes , 2014 .

[85]  harald Cramer,et al.  Stationary And Related Stochastic Processes , 1967 .

[86]  Catherine E. Powell,et al.  Preface to "An Introduction to Computational Stochastic PDEs" , 2014 .

[87]  A. Nazarov,et al.  Small ball probabilities for smooth Gaussian fields and tensor products of compact operators , 2010, 1009.4412.

[88]  Fuchang Gao,et al.  Exact L2 Small Balls of Gaussian Processes , 2004 .

[89]  Alexander I. Nazarov,et al.  Small ball probabilities for Gaussian random fields and tensor products of compact operators , 2008 .

[90]  Jean-Renaud Pycke Une généralisation du développement de Karhunen–Loève du pont brownien , 2001 .

[91]  Ingo Steinwart,et al.  A short note on the comparison of interpolation widths, entropy numbers, and Kolmogorov widths , 2016, J. Approx. Theory.

[92]  M. Solomjak,et al.  Spectral Theory of Self-Adjoint Operators in Hilbert Space , 1987 .

[93]  Jared C. Bronski,et al.  Small Ball Constants and Tight Eigenvalue Asymptotics for Fractional Brownian Motions , 2003 .