Cycling Mobility – A Life Cycle Assessment Based Approach

Abstract Cycling brings advantages to the environment and is also an affordable transportation mode. The number of people using bicycles has been increasing in several European countries as well as the interest in manufacturing new types of bicycles with different materials. The main objective of this paper is to evaluate the complete life cycle of a bicycle (cradle-to-grave analysis) and to quantify which components have the highest environmental impact. The production, maintenance, use and waste scenarios were modelled using the life cycle assessment software SimaPro. The use of bicycles in two different realities in terms of bicycle modal share (Portugal and The Netherlands) was considered. Then, some “what-if” scenarios were performed, in which some bicycles components were replaced with different materials, with the objective to decrease the environmental impact of the product itself. Aluminium, steel, wood and carbon fiber were tested in SimaPro. Results indicate that the components made in aluminium have the highest environmental impact. On the other hand, a bicycle with carbon fiber shows the lowest impact for the majority of the environmental categories. When evaluating the entire life cycle of the bicycle, the production phase has the highest negative impact.