A Micro-Machined Gyroscope for Rotating Aircraft

In this paper we present recent work on the design, fabrication by silicon micromachining, and packaging of a new gyroscope for stabilizing the autopilot of rotating aircraft. It operates based on oscillation of the silicon pendulum between two torsion girders for detecting the Coriolis force. The oscillation of the pendulum is initiated by the rolling and deflecting motion of the rotating carrier. Therefore, the frequency and amplitude of the oscillation are proportional to the rolling frequency and deflecting angular rate of the rotating carrier, and are measured by the sensing electrodes. A modulated pulse with constant amplitude and unequal width is obtained by a linearizing process of the gyroscope output signal and used to control the deflection of the rotating aircraft. Experimental results show that the gyroscope has a resolution of 0.008 °/s and a bias of 56.18 °/h.

[1]  Y. Mochida,et al.  A micromachined vibrating rate gyroscope with independent beams for the drive and detection modes , 2000, Technical Digest. IEEE International MEMS 99 Conference. Twelfth IEEE International Conference on Micro Electro Mechanical Systems (Cat. No.99CH36291).

[2]  Jeffrey T. Borenstein,et al.  Performance of MEMS inertial sensors , 1998, IEEE 1998 Position Location and Navigation Symposium (Cat. No.98CH36153).

[3]  R. Hulsing,et al.  MEMS inertial rate and acceleration sensor , 1998, IEEE Aerospace and Electronic Systems Magazine.

[4]  M. Offenberg,et al.  A surface micromachined silicon gyroscope using a thick polysilicon layer , 1999, Technical Digest. IEEE International MEMS 99 Conference. Twelfth IEEE International Conference on Micro Electro Mechanical Systems (Cat. No.99CH36291).