15% efficient Cu(In,Ga)Se2 solar cells obtained by low-temperature pulsed electron deposition
暂无分享,去创建一个
Andrea Zappettini | Davide Calestani | F. Bissoli | N. Delmonte | Roberto Mosca | S. Rampino | M. Bronzoni | E. Gombia | F. Pattini | L. Nasi | M. Calicchio | E. Gombia | L. Nasi | M. Mazzer | N. Armani | S. Rampino | F. Bissoli | M. Bronzoni | F. Pattini | A. Zappettini | N. Delmonte | Massimo Mazzer | M. Calicchio | Edmondo Gilioli | D. Calestani | R. Mosca | N. Armani | E. Gilioli
[1] M. Powalla,et al. Sodium co-evaporation for low temperature Cu(In,Ga)Se2 deposition , 2001 .
[2] P. Zabierowski,et al. Capacitance profiling in the CIGS solar cells , 2007 .
[3] John H. Scofield,et al. Sputtered molybdenum bilayer back contact for copper indium diselenide-based polycrystalline thin-film solar cells , 1995 .
[4] A. Romeo,et al. The second‐generation of CdTe and CuInGaSe2 thin film PV modules , 2011 .
[5] Michael Dudley,et al. Springer handbook of crystal growth , 2010 .
[6] Valentin Craciun,et al. Growth of apatite films by laser ablation: Reduction of the droplet areal density , 1996 .
[7] H. Schock,et al. Influence of the selenium flux on the growth of Cu(In,Ga)Se2 thin films , 2003 .
[8] Wen-Chieh Shih,et al. A promising sputtering route for one-step fabrication of chalcopyrite phase Cu(In,Ga)Se2 absorbers without extra Se supply , 2012 .
[9] H. Hahn,et al. Cu(In,Ga)Se2 Thin Film Preparation from a Cu(In,Ga) Metallic Alloy and Se Nanoparticles by an Intense Pulsed Light Technique , 2011 .
[10] I. Repins,et al. 19·9%‐efficient ZnO/CdS/CuInGaSe2 solar cell with 81·2% fill factor , 2008 .
[11] Subba Ramaiah Kodigala. Cu(In1−xGax)Se2 and CuIn(Se1−xSx)2 Thin Film Solar Cells , 2010 .
[12] C. J. Li,et al. Effect of substrate temperature on the structural and electrical properties of CIGS films based on the one-stage co-evaporation process , 2010 .
[13] S. Siebentritt,et al. Charge and doping distributions by capacitance profiling in Cu(In,Ga)Se2 solar cells , 2008 .
[14] Mingzheng Zha,et al. A new process for synthesizing high-purity stoichiometric cadmium telluride , 2000 .
[15] S. Bereznev,et al. Preparation of Cu(In,Ga)Se2 layers by selenization of electrodeposited Cu–In–Ga precursors , 2006 .
[16] C. Guillén,et al. CuIn1−xGaxSe2‐based thin‐film solar cells by the selenization of sequentially evaporated metallic layers , 2006 .
[17] H. Schock,et al. Interpretation of admittance, capacitance-voltage, and current-voltage signatures in Cu(In,Ga)Se2 thin film solar cells , 2010 .
[18] Neelkanth G. Dhere,et al. Scale-up issues of CIGS thin film PV modules , 2011 .
[19] A. Goyal. Second-Generation HTS Conductors , 2006 .
[20] Yun Sun,et al. Effects of substrate temperature on the structural and electrical properties of Cu(In,Ga)Se2 thin films , 2009 .
[21] D. Hariskos,et al. New world record efficiency for Cu(In,Ga)Se2 thin‐film solar cells beyond 20% , 2011 .
[22] F. Bissoli,et al. Growth of Cu(In,Ga)Se2 thin films by a novel single‐stage route based on pulsed electron deposition , 2011 .
[23] R. Klenk,et al. PREPARATION OF HOMOGENEOUS CU(INGA)SE2 FILMS BY SELENIZATION OF METAL PRECURSORS IN H2SE ATMOSPHERE , 1995 .
[24] Dominique Drouin,et al. CASINO V2.42: a fast and easy-to-use modeling tool for scanning electron microscopy and microanalysis users. , 2007, Scanning.