15% efficient Cu(In,Ga)Se2 solar cells obtained by low-temperature pulsed electron deposition

An approach to low-cost production of Cu(In,Ga)Se2 (CIGS) solar cells based on pulsed electron deposition (PED) has achieved a crucial milestone. Lab-scale solar cells with efficiencies exceeding 15% were obtained by depositing CIGS from a stoichiometric quaternary target at 270 °C and without any post-growth treatment. An effective control of the p-doping level in CIGS was achieved by starting the PED deposition with a layer of NaF tailored to generate the optimum Na diffusion. These results show that PED is a promising technology for the development of a competitive low-cost production process for CIGS solar cells.

[1]  M. Powalla,et al.  Sodium co-evaporation for low temperature Cu(In,Ga)Se2 deposition , 2001 .

[2]  P. Zabierowski,et al.  Capacitance profiling in the CIGS solar cells , 2007 .

[3]  John H. Scofield,et al.  Sputtered molybdenum bilayer back contact for copper indium diselenide-based polycrystalline thin-film solar cells , 1995 .

[4]  A. Romeo,et al.  The second‐generation of CdTe and CuInGaSe2 thin film PV modules , 2011 .

[5]  Michael Dudley,et al.  Springer handbook of crystal growth , 2010 .

[6]  Valentin Craciun,et al.  Growth of apatite films by laser ablation: Reduction of the droplet areal density , 1996 .

[7]  H. Schock,et al.  Influence of the selenium flux on the growth of Cu(In,Ga)Se2 thin films , 2003 .

[8]  Wen-Chieh Shih,et al.  A promising sputtering route for one-step fabrication of chalcopyrite phase Cu(In,Ga)Se2 absorbers without extra Se supply , 2012 .

[9]  H. Hahn,et al.  Cu(In,Ga)Se2 Thin Film Preparation from a Cu(In,Ga) Metallic Alloy and Se Nanoparticles by an Intense Pulsed Light Technique , 2011 .

[10]  I. Repins,et al.  19·9%‐efficient ZnO/CdS/CuInGaSe2 solar cell with 81·2% fill factor , 2008 .

[11]  Subba Ramaiah Kodigala Cu(In1−xGax)Se2 and CuIn(Se1−xSx)2 Thin Film Solar Cells , 2010 .

[12]  C. J. Li,et al.  Effect of substrate temperature on the structural and electrical properties of CIGS films based on the one-stage co-evaporation process , 2010 .

[13]  S. Siebentritt,et al.  Charge and doping distributions by capacitance profiling in Cu(In,Ga)Se2 solar cells , 2008 .

[14]  Mingzheng Zha,et al.  A new process for synthesizing high-purity stoichiometric cadmium telluride , 2000 .

[15]  S. Bereznev,et al.  Preparation of Cu(In,Ga)Se2 layers by selenization of electrodeposited Cu–In–Ga precursors , 2006 .

[16]  C. Guillén,et al.  CuIn1−xGaxSe2‐based thin‐film solar cells by the selenization of sequentially evaporated metallic layers , 2006 .

[17]  H. Schock,et al.  Interpretation of admittance, capacitance-voltage, and current-voltage signatures in Cu(In,Ga)Se2 thin film solar cells , 2010 .

[18]  Neelkanth G. Dhere,et al.  Scale-up issues of CIGS thin film PV modules , 2011 .

[19]  A. Goyal Second-Generation HTS Conductors , 2006 .

[20]  Yun Sun,et al.  Effects of substrate temperature on the structural and electrical properties of Cu(In,Ga)Se2 thin films , 2009 .

[21]  D. Hariskos,et al.  New world record efficiency for Cu(In,Ga)Se2 thin‐film solar cells beyond 20% , 2011 .

[22]  F. Bissoli,et al.  Growth of Cu(In,Ga)Se2 thin films by a novel single‐stage route based on pulsed electron deposition , 2011 .

[23]  R. Klenk,et al.  PREPARATION OF HOMOGENEOUS CU(INGA)SE2 FILMS BY SELENIZATION OF METAL PRECURSORS IN H2SE ATMOSPHERE , 1995 .

[24]  Dominique Drouin,et al.  CASINO V2.42: a fast and easy-to-use modeling tool for scanning electron microscopy and microanalysis users. , 2007, Scanning.