Learning Analytics : Intelligent Decision Support Systems for Learning Environments

Visual representations of student-generated trace data during learning activities help both students and instructors interpret them intuitively and perceive hidden aspects of these data quickly. In this paper, we elaborate on the visualization of temporal trace data during assessment. The goals of the study were twofold: a) to depict students’ engagement in the assessment procedure in terms of time spent and temporal factors associated with learning-specific characteristics, and b) to explore the factors that influence the teachers’ Behavioural Intention to use the proposed system as an information system and their perceptions of the effectiveness and acceptance of our approach. The proposed visualizations have been explored in a study with 32 Secondary Education teachers. We adopted a design-based research methodology and employed a survey instrument — based on the Learning Analytics Acceptance Model (LAAM) — in order to measure the expected impact of the proposed visualizations. The analysis of the findings indicates that a) temporal factors can be used for visualizing students’ behaviour during assessment, and b) the visualization of the temporal dimension of students’ behaviour increases teachers’ awareness of students’ progress, possible misconceptions (e.g., guessing the correct answer) and task difficulty.ResumenLas representaciones visuales de datos de trazas generados por el alumnado durante las actividades de aprendizaje ayudan tanto a los estudiantes como a los profesores a interpretarlos intuitivamente y a percibir con rapidez aspectos ocultos. En este trabajo, describimos la visualización de datos de trazas temporales durante la evaluación. El estudio tenía un doble objetivo: a) describir la implicación de los estudiantes en el proceso de evaluación en cuanto a tiempo invertido y factores temporales asociados con características concretas del aprendizaje, y b) explorar los factores que influyen en la intención comportamental del profesorado en cuanto a emplear el sistema propuesto como sistema de información y sus percepciones de la efectividad y la aceptación de nuestro enfoque. Las visualizaciones propuestas se han examinado en un estudio con 32 profesores de educación secundaria. Adoptamos una metodología de investigación basada en el diseño y utilizamos un instrumento de encuesta -basada en el modelo de aceptación del análisis del aprendizaje- para medir el impacto esperado de las visualizaciones propuestas. El análisis de los hallazgos indica que a) los factores temporales se pueden utilizar para visualizar el comportamiento de los estudiantes durante la evaluación, y b) la visualización de la dimensión temporal del comportamiento de los estudiantes aumenta el conocimiento del profesor respecto al progreso de los alumnos, posibles conceptos erróneos (por ejemplo, adivinar la respuesta correcta) y dificultad de la tarea.

[1]  Antonio Padilla-Meléndez,et al.  Factors affecting e-collaboration technology use among management students , 2008, Comput. Educ..

[2]  P. Lachenbruch Statistical Power Analysis for the Behavioral Sciences (2nd ed.) , 1989 .

[3]  Anastasios A. Economides Adaptive Orientation Methods in Computer Adaptive Testing , 2005 .

[4]  Kristin A. Cook,et al.  Illuminating the Path: The Research and Development Agenda for Visual Analytics , 2005 .

[5]  Marek Hatala,et al.  A qualitative evaluation of evolution of a learning analytics tool , 2012, Comput. Educ..

[6]  I. Ajzen Perceived behavioral control, self-efficacy, locus of control, and the theory of planned behavior. , 2002 .

[7]  Gaby Odekerken-Schröder,et al.  Using PLS path modeling for assessing hierarchial construct models: guidelines and impirical illustration , 2009 .

[8]  Carlos Delgado Kloos,et al.  GLASS: a learning analytics visualization tool , 2012, LAK '12.

[9]  L. Morris,et al.  Tracking student behavior, persistence, and achievement in online courses , 2005, Internet High. Educ..

[10]  Shane Dawson,et al.  Mining LMS data to develop an "early warning system" for educators: A proof of concept , 2010, Comput. Educ..

[11]  Marek Hatala,et al.  Factors influencing beliefs for adoption of a learning analytics tool: An empirical study , 2013, Comput. Educ..

[12]  T. Anderson,et al.  Design-Based Research , 2012 .

[13]  Deborah Compeau,et al.  Computer Self-Efficacy: Development of a Measure and Initial Test , 1995, MIS Q..

[14]  Erik Duval,et al.  The student activity meter for awareness and self-reflection , 2012, CHI Extended Abstracts.

[15]  Wynne W. Chin The partial least squares approach for structural equation modeling. , 1998 .

[16]  Anastasios A. Economides,et al.  Towards the alignment of computer-based assessment outcome with learning goals: The LAERS architecture , 2013, 2013 IEEE Conference on e-Learning, e-Management and e-Services.

[17]  Vania Dimitrova,et al.  CourseVis: A graphical student monitoring tool for supporting instructors in web-based distance courses , 2007, Int. J. Hum. Comput. Stud..

[18]  Jacob Cohen Statistical Power Analysis for the Behavioral Sciences , 1969, The SAGE Encyclopedia of Research Design.

[19]  B. Zimmerman Becoming a Self-Regulated Learner: An Overview , 2002 .

[20]  Claudia van Oppen,et al.  USING PLS PATH MODELING FOR ASSESSING HIERARCHICAL CONSTRUCT MODELS : GUIDELINES AND EMPIRICAL , 2022 .

[21]  Riccardo Mazza,et al.  Exploring Usage Analysis in Learning Systems: Gaining Insights From Visualisations , 2005 .

[22]  Erik Duval,et al.  Tracking Actual Usage: the Attention Metadata Approach , 2007, J. Educ. Technol. Soc..

[23]  Alejandra Martínez-Monés,et al.  From Mirroring to Guiding: A Review of State of the Art Technology for Supporting Collaborative Learning , 2005, Int. J. Artif. Intell. Educ..

[24]  Fred D. Davis Perceived Usefulness, Perceived Ease of Use, and User Acceptance of Information Technology , 1989, MIS Q..

[25]  E. Duval Attention please!: learning analytics for visualization and recommendation , 2011, LAK.

[26]  Erik Duval,et al.  Evaluating the Student Activity Meter: Two Case Studies , 2011, ICWL.