Persistently illuminated regions at the lunar poles: Ideal sites for future exploration

Abstract The Lunar Reconnaissance Orbiter Camera (LROC) provides multi-temporal and high resolution imaging of the north and south polar regions. These images delimit illuminated areas from those in shadow, and are used to analyze the illumination environment of the polar regions over the course of a lunar year. The Wide Angle Camera (WAC) provides repeat imaging of the north and south pole at a frequency of roughly 2 h with a ground sampling distance of 100 m. The LROC Narrow Angle Camera (NAC) acquires images with a ground sampling distance of 0.5–2.0 m providing the means to construct high resolution maps that reveal illuminated terrain under varying lighting conditions. With the multi-temporal coverage provided by the WAC and the high resolution images from the NAC, the LROC dataset enables a more comprehensive analysis of the illumination conditions near the lunar poles than any previous image based dataset. Furthermore, these images are used to validate previously published numerical models that simulate polar illumination conditions. From our analysis of the LROC images, we identified localized regions where the lunar surface remains illuminated for nearly 94% of the year with the longest eclipsed period lasting only 43 h. We also identified small illuminated peaks (tens of meters across) in areas previously modeled to be in shadow. Together, the WAC and NAC dataset provide direct, high resolution observations of the actual surface illumination environment of potential exploration sites near the lunar poles.

[1]  Mark S. Robinson,et al.  Planetary science: Constant illumination at the lunar north pole , 2005, Nature.

[2]  Mark S. Robinson,et al.  Illumination conditions at the lunar South Pole , 1999 .

[3]  Bruce C. Murray,et al.  The behavior of volatiles on the lunar surface , 1961 .

[4]  N. Iwagami,et al.  Hemispherical distribution of CO above the Venus’ clouds by ground-based 2.3 μm spectroscopy , 2010 .

[5]  Mark S. Robinson,et al.  Initial results for the north pole of the Moon from Mini‐SAR, Chandrayaan‐1 mission , 2010 .

[6]  D. Paige,et al.  Effects of orbital evolution on lunar ice stability , 2010 .

[7]  Andrew P. Ingersoll,et al.  Stability of polar frosts in spherical bowl-shaped craters on the Moon, Mercury, and Mars , 1992 .

[8]  W. Ward Past Orientation of the Lunar Spin Axis , 1975, Science.

[9]  E. Murad,et al.  Atmospheric sodium chemistry I. The altitude region 70‐100 km , 1982 .

[10]  David E. Smith,et al.  IJ Constraints on the volatile distribution within Shackleton crater at the lunar south pole , 2012 .

[11]  E. Eliason,et al.  The South Pole Region of the Moon as Seen by Clementine , 1994, Science.

[12]  Kelly Snook,et al.  Diviner Lunar Radiometer Observations of Cold Traps in the Moon’s South Polar Region , 2010, Science.

[13]  S. Nozette,et al.  Integration of lunar polar remote‐sensing data sets: Evidence for ice at the lunar south pole , 2001 .

[14]  P. Spudis,et al.  Geology of Shackleton Crater and the south pole of the Moon , 2008 .

[15]  Scott Bryant Lunar pole illumination and communications maps computed from GSSR elevation data , 2009, 2009 IEEE Aerospace conference.

[16]  S. Nozette,et al.  The Clementine Bistatic Radar Experiment , 1994, Science.

[17]  D. Lawrence,et al.  Two‐dimensional distribution of volatiles in the lunar regolith from space weathering simulations , 2012 .

[18]  I. E. Garrick,et al.  Literature Review : BOOKS THE PAPERS OF ROBERT H. GODDARD Edited by Esther C. Goddard and G. Edward Pendray McGraw-Hill Book Co., New York, N. Y. (1970) , 1973 .

[19]  A. Hunter,et al.  The Planets: Their Origin and Development , 1952 .

[20]  William J. Marinelli,et al.  The Lunar Reconnaissance Orbiter Miniature Radio Frequency (Mini-RF) Technology Demonstration , 2010 .

[21]  Hiroshi Araki,et al.  Illumination conditions at the lunar polar regions by KAGUYA(SELENE) laser altimeter , 2008 .

[22]  Bruce A. Campbell,et al.  Radar imaging of the lunar poles , 2003, Nature.

[23]  David E. Smith,et al.  Orbit determination of the Lunar Reconnaissance Orbiter , 2012, Journal of Geodesy.

[24]  Grant Heiken,et al.  Book-Review - Lunar Sourcebook - a User's Guide to the Moon , 1991 .

[25]  Alan B. Binder,et al.  Polar hydrogen deposits on the Moon , 2000 .

[26]  T. A. Mutch Geology of the Moon: A Stratigraphic View , 1973 .

[27]  A. S. Kozyrev,et al.  Hydrogen Mapping of the Lunar South Pole Using the LRO Neutron Detector Experiment LEND , 2010, Science.

[28]  William Marshall,et al.  Detection of Water in the LCROSS Ejecta Plume , 2010, Science.

[29]  J. D. Burke,et al.  Lunar Base Siting , 1991 .

[30]  J. Laskar,et al.  Stabilization of the Earth's obliquity by the Moon , 1993, Nature.

[31]  Erwan Mazarico,et al.  Illumination conditions of the lunar polar regions using LOLA topography , 2011 .

[32]  Keith A. Howard,et al.  Geologic map of the south side of the Moon , 1979 .

[33]  David Carl Humm,et al.  IN-FLIGHT GEOMETRIC CALIBRATION OF THE LUNAR RECONNAISSANCE ORBITER CAMERA , 2012 .

[34]  David E. Smith,et al.  Initial observations from the Lunar Orbiter Laser Altimeter (LOLA) , 2010 .

[35]  James D. Burke Merits of A Lunar Polar Base Location , 1985 .

[36]  David E. Smith,et al.  The Clementine Mission to the Moon: Scientific Overview , 1994, Science.

[37]  James A. McGovern,et al.  Illumination conditions of the south pole of the Moon derived using Kaguya topography , 2010 .

[38]  D. Campbell,et al.  Topography of the lunar poles from radar interferometry: a survey of cold trap locations. , 1999, Science.

[39]  Charles Baker,et al.  Lunar Reconnaissance Orbiter Mission and Spacecraft Design , 2010 .

[40]  Alfred S. McEwen,et al.  Mapping of the Moon by Clementine , 1997 .

[41]  B. Lucchitta Geologic map of the north side of the Moon , 1978 .

[42]  A. McEwen,et al.  Lunar Reconnaissance Orbiter Camera (LROC) Instrument Overview , 2010 .