High order parametrized maximum-principle-preserving and positivity-preserving WENO schemes on unstructured meshes

Summary form only given. In this talk, we generalize the maximum-principle-preserving (MPP) flux limiting technique developed in [Z. Xu, Math. Comp., (2013)] to develop a class high order MPP finite volume schemes for scalar conservation laws and positivity-preserving (PP) finite volume WENO schemes for compressible Euler system on two dimensional unstructured meshes. The key idea of this parameterized technique is to limit the high order schemes towards first order ones which enjoy MPP property, by decoupling linear constraints on numerical fluxes. Error analysis on one dimensional non-uniform meshes is presented to show the proposed MPP schemes can maintain high order of accuracy. Similar approach is applied to solve compressible Euler systems to obtain high order positivity-preserving schemes. Numerical examples coupled with third order Runge-Kutta time integrator are reported.

[1]  Xiangxiong Zhang,et al.  On maximum-principle-satisfying high order schemes for scalar conservation laws , 2010, J. Comput. Phys..

[2]  Chi-Wang Shu,et al.  TVB Runge-Kutta local projection discontinuous galerkin finite element method for conservation laws. II: General framework , 1989 .

[3]  Yuan Liu,et al.  A Robust Reconstruction for Unstructured WENO Schemes , 2013, J. Sci. Comput..

[4]  Chao Liang,et al.  Parametrized Maximum Principle Preserving Flux Limiters for High Order Schemes Solving Multi-Dimensional Scalar Hyperbolic Conservation Laws , 2014, J. Sci. Comput..

[5]  Vladimir A. Titarev,et al.  WENO schemes on arbitrary mixed-element unstructured meshes in three space dimensions , 2011, J. Comput. Phys..

[6]  D. D. Zeeuw,et al.  An adaptively refined Cartesian mesh solver for the Euler equations , 1993 .

[7]  Xiangxiong Zhang,et al.  Maximum-principle-satisfying and positivity-preserving high-order schemes for conservation laws: survey and new developments , 2011, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[8]  Zhengfu Xu Parametrized maximum principle preserving flux limiters for high order schemes solving hyperbolic conservation laws: one-dimensional scalar problem , 2014, Math. Comput..

[9]  Zhengfu Xu,et al.  Parametrized Positivity Preserving Flux Limiters for the High Order Finite Difference WENO Scheme Solving Compressible Euler Equations , 2014, J. Sci. Comput..

[10]  J. Batina Unsteady Euler airfoil solutions using unstructured dynamic meshes , 1989 .

[11]  Zhengfu Xu,et al.  High Order Maximum Principle Preserving Finite Volume Method for Convection Dominated Problems , 2016, J. Sci. Comput..

[12]  Michael Dumbser,et al.  Arbitrary high order non-oscillatory finite volume schemes on unstructured meshes for linear hyperbolic systems , 2007, J. Comput. Phys..

[13]  Dimitris Drikakis,et al.  WENO schemes for mixed-elementunstructured meshes , 2010 .

[14]  E. Oñate,et al.  A stabilized finite point method for analysis of fluid mechanics problems , 1996 .

[15]  Chi-Wang Shu,et al.  Efficient Implementation of Weighted ENO Schemes , 1995 .

[16]  Xiangxiong Zhang,et al.  Maximum-Principle-Satisfying and Positivity-Preserving High Order Discontinuous Galerkin Schemes for Conservation Laws on Triangular Meshes , 2011, Journal of Scientific Computing.

[17]  Xiangxiong Zhang,et al.  Positivity-preserving high order finite difference WENO schemes for compressible Euler equations , 2012, J. Comput. Phys..

[18]  Chaowei Hu,et al.  No . 98-32 Weighted Essentially Non-Oscillatory Schemes on Triangular Meshes , 1998 .

[19]  Zhengfu Xu,et al.  A parametrized maximum principle preserving flux limiter for finite difference RK-WENO schemes with applications in incompressible flows , 2013, J. Comput. Phys..

[20]  Xiangxiong Zhang,et al.  On positivity-preserving high order discontinuous Galerkin schemes for compressible Euler equations on rectangular meshes , 2010, J. Comput. Phys..

[21]  O. Friedrich,et al.  Weighted Essentially Non-Oscillatory Schemes for the Interpolation of Mean Values on Unstructured Grids , 1998 .

[22]  Nikolaus A. Adams,et al.  Positivity-preserving method for high-order conservative schemes solving compressible Euler equations , 2013, J. Comput. Phys..

[23]  Guanghui Hu,et al.  An adaptive finite volume method for 2D steady Euler equations with WENO reconstruction , 2013, J. Comput. Phys..

[24]  Chi-Wang Shu,et al.  High-Order WENO Schemes for Hamilton-Jacobi Equations on Triangular Meshes , 2003, SIAM J. Sci. Comput..

[25]  P. Woodward,et al.  The numerical simulation of two-dimensional fluid flow with strong shocks , 1984 .

[26]  S. Osher,et al.  Uniformly high order accurate essentially non-oscillatory schemes, 111 , 1987 .

[27]  Michael Dumbser,et al.  Quadrature-free non-oscillatory finite volume schemes on unstructured meshes for nonlinear hyperbolic systems , 2007, J. Comput. Phys..

[28]  S. Osher,et al.  Weighted essentially non-oscillatory schemes , 1994 .