Network-based metabolic analysis and microbial community modeling.

[1]  R. Tibshirani,et al.  Sparse inverse covariance estimation with the graphical lasso. , 2008, Biostatistics.

[2]  Jesse R. Zaneveld,et al.  Phage-bacteria network analysis and its implication for the understanding of coral disease. , 2015, Environmental microbiology.

[3]  Dongmei Ai,et al.  Efficient statistical significance approximation for local similarity analysis of high-throughput time series data , 2013, Bioinform..

[4]  Kevin P. Keegan,et al.  Predicted Relative Metabolomic Turnover (PRMT): determining metabolic turnover from a coastal marine metagenomic dataset , 2011, Microbial Informatics and Experimentation.

[5]  Katherine H. Huang,et al.  Structure, Function and Diversity of the Healthy Human Microbiome , 2012, Nature.

[6]  Hong Gu,et al.  BioMiCo: a supervised Bayesian model for inference of microbial community structure , 2015, Microbiome.

[7]  D. Kell,et al.  Metabolomics and systems pharmacology: why and how to model the human metabolic network for drug discovery☆ , 2014, Drug discovery today.

[8]  Mohammad Bahram,et al.  Network perspectives of ectomycorrhizal associations , 2014 .

[9]  Andrew Kenny,et al.  Spatio-temporal Bayesian network models with latent variables for revealing trophic dynamics and functional networks in fisheries ecology , 2015, Ecol. Informatics.

[10]  Juancarlos Chan,et al.  Gene Ontology Consortium: going forward , 2014, Nucleic Acids Res..

[11]  Stefan Bertilsson,et al.  Resistant Microbial Cooccurrence Patterns Inferred by Network Topology , 2015, Applied and Environmental Microbiology.

[12]  Zeba Wunderlich,et al.  Using the topology of metabolic networks to predict viability of mutant strains. , 2006, Biophysical journal.

[13]  Steve Horvath,et al.  WGCNA: an R package for weighted correlation network analysis , 2008, BMC Bioinformatics.

[14]  Gheyath K Nasrallah,et al.  Human Microbiome and its Association With Health and Diseases , 2016, Journal of cellular physiology.

[15]  Peer Bork,et al.  Metabolic dependencies drive species co-occurrence in diverse microbial communities , 2015, Proceedings of the National Academy of Sciences.

[16]  Kishori M. Konwar,et al.  Illuminating Microbial Dark Matter in Meromictic Sakinaw Lake , 2014, Applied and Environmental Microbiology.

[17]  D. Caron,et al.  Marine bacterial, archaeal and protistan association networks reveal ecological linkages , 2011, The ISME Journal.

[18]  Trevor Hastie,et al.  The Elements of Statistical Learning , 2001 .

[19]  Matthew G. Bakker,et al.  Diffuse symbioses: roles of plant–plant, plant–microbe and microbe–microbe interactions in structuring the soil microbiome , 2014, Molecular ecology.

[20]  B. Mitter,et al.  21st century agriculture: integration of plant microbiomes for improved crop production and food security , 2014, Microbial biotechnology.

[21]  Ayellet V. Segrè,et al.  Integrative Genomics Reveals Novel Molecular Pathways and Gene Networks for Coronary Artery Disease , 2014, PLoS genetics.

[22]  Luis Pedro Coelho,et al.  Plankton networks driving carbon export in the oligotrophic ocean , 2015, Nature.

[23]  B. Palsson,et al.  Escherichia coli K-12 undergoes adaptive evolution to achieve in silico predicted optimal growth , 2002, Nature.

[24]  Jonathan Friedman,et al.  Inferring Correlation Networks from Genomic Survey Data , 2012, PLoS Comput. Biol..

[25]  B. Palsson,et al.  Metabolic Flux Balancing: Basic Concepts, Scientific and Practical Use , 1994, Bio/Technology.

[26]  Rick L. Stevens,et al.  The RAST Server: Rapid Annotations using Subsystems Technology , 2008, BMC Genomics.

[27]  Hongyu Zhao,et al.  CCLasso: correlation inference for compositional data through Lasso , 2015, Bioinform..

[28]  Stefano Allesina,et al.  What Can Interaction Webs Tell Us About Species Roles? , 2015, PLoS Comput. Biol..

[29]  Gerard Muyzer,et al.  A comparison of taxon co-occurrence patterns for macro- and microorganisms. , 2007, Ecology.

[30]  E. Borenstein,et al.  Metabolic modeling of species interaction in the human microbiome elucidates community-level assembly rules , 2013, Proceedings of the National Academy of Sciences.

[31]  Roded Sharan,et al.  Competitive and cooperative metabolic interactions in bacterial communities. , 2011, Nature communications.

[32]  K. Foster,et al.  The ecology of the microbiome: Networks, competition, and stability , 2015, Science.

[33]  J. Raes,et al.  Microbial interactions: from networks to models , 2012, Nature Reviews Microbiology.

[34]  N. Meinshausen,et al.  High-dimensional graphs and variable selection with the Lasso , 2006, math/0608017.

[35]  L. Roesch,et al.  Network topology reveals high connectance levels and few key microbial genera within soils , 2014, Front. Environ. Sci..

[36]  Kishori M. Konwar,et al.  Expanding the boundaries of local similarity analysis , 2013, BMC Genomics.

[37]  Thomas P. Curtis,et al.  Estimating prokaryotic diversity and its limits , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[38]  Peer Bork,et al.  Determinants of community structure in the global plankton interactome , 2015, Science.

[39]  Jason H Moore,et al.  Computational analysis of gene-gene interactions using multifactor dimensionality reduction , 2004, Expert review of molecular diagnostics.

[40]  F. Doyle,et al.  Dynamic flux balance analysis of diauxic growth in Escherichia coli. , 2002, Biophysical journal.

[41]  Lingling An,et al.  Investigating microbial co-occurrence patterns based on metagenomic compositional data , 2015, Bioinform..

[42]  Rick L. Stevens,et al.  High-throughput generation, optimization and analysis of genome-scale metabolic models , 2010, Nature Biotechnology.

[43]  Gianluca Bontempi,et al.  minet: A R/Bioconductor Package for Inferring Large Transcriptional Networks Using Mutual Information , 2008, BMC Bioinformatics.

[44]  Intawat Nookaew,et al.  The RAVEN Toolbox and Its Use for Generating a Genome-scale Metabolic Model for Penicillium chrysogenum , 2013, PLoS Comput. Biol..

[45]  Christian L. Müller,et al.  Sparse and Compositionally Robust Inference of Microbial Ecological Networks , 2014, PLoS Comput. Biol..

[46]  Roded Sharan,et al.  Decoupling Environment-Dependent and Independent Genetic Robustness across Bacterial Species , 2010, PLoS Comput. Biol..

[47]  J. Rousk,et al.  Microbial regulation of global biogeochemical cycles , 2014, Front. Microbiol..

[48]  Sophie J. Weiss,et al.  Correlation detection strategies in microbial data sets vary widely in sensitivity and precision , 2016, The ISME Journal.

[49]  Alex H. Lang,et al.  Metabolic resource allocation in individual microbes determines ecosystem interactions and spatial dynamics. , 2014, Cell reports.

[50]  Yixin Chen,et al.  MicrobesFlux: a web platform for drafting metabolic models from the KEGG database , 2012, BMC Systems Biology.

[51]  Curtis Huttenhower,et al.  Microbial Co-occurrence Relationships in the Human Microbiome , 2012, PLoS Comput. Biol..

[52]  Stefanie Widder,et al.  Deciphering microbial interactions and detecting keystone species with co-occurrence networks , 2014, Front. Microbiol..

[53]  R. Albert,et al.  The large-scale organization of metabolic networks , 2000, Nature.

[54]  C. Huttenhower,et al.  Cross-biome comparison of microbial association networks , 2015, Front. Microbiol..

[55]  C. Quince,et al.  Fluvial network organization imprints on microbial co-occurrence networks , 2014, Proceedings of the National Academy of Sciences.

[56]  Yan He,et al.  Geographic patterns of co-occurrence network topological features for soil microbiota at continental scale in eastern China , 2016, The ISME Journal.

[57]  M. Saito,et al.  Co-occurring Synechococcus ecotypes occupy four major oceanic regimes defined by temperature, macronutrients and iron , 2015, The ISME Journal.

[58]  C. Klausmeier,et al.  Microbial resource utilization traits and trade-offs: implications for community structure, functioning, and biogeochemical impacts at present and in the future , 2015, Front. Microbiol..

[59]  Miguel Rocha,et al.  Merlin: Metabolic Models Reconstruction using Genome-Scale Information* , 2010 .

[60]  Costas D. Maranas,et al.  OptCom: A Multi-Level Optimization Framework for the Metabolic Modeling and Analysis of Microbial Communities , 2012, PLoS Comput. Biol..

[61]  Michael Mitzenmacher,et al.  Detecting Novel Associations in Large Data Sets , 2011, Science.

[62]  A. Pruski,et al.  River organic matter shapes microbial communities in the sediment of the Rhône prodelta , 2014, The ISME Journal.

[63]  Eran Segal,et al.  Growth dynamics of gut microbiota in health and disease inferred from single metagenomic samples , 2015, Science.

[64]  Amy Pruden,et al.  Effect of disinfectant, water age, and pipe materials on bacterial and eukaryotic community structure in drinking water biofilm. , 2014, Environmental science & technology.