Search techniques

Search plays an important role in knowledge discovery in databases (KDD) and data mining. Given hypothesis representation schemas and hypothesis evaluation criteria, a search process explores a hypothesis space to find useful knowledge from given data. The effectiveness and efficiency of the underlying search methods determine the success and performance of the overall KDD process. In this chapter, we briefly describe the basic concepts of hypothesis space and hypothesis evaluation, discuss in detail the basic search techniques, and highlight their performance and complexity. Particularly, we consider systematic enumerative search methods, including best-first search, depth-first branch-and-bound and iterative deepening, and neighborhood search methods, including gradient descent, artificial neural networks, tabu search, and simulated annealing. We also describe beam search, complete beam search, and genetic algorithms.

[1]  J. K. Lenstra,et al.  Local Search in Combinatorial Optimisation. , 1997 .

[2]  Mihalis Yannakakis,et al.  How easy is local search? , 1985, 26th Annual Symposium on Foundations of Computer Science (sfcs 1985).

[3]  Mark S. Fox,et al.  Constraint-Directed Search: A Case Study of Job-Shop Scheduling , 1987 .

[4]  Rina Dechter,et al.  Generalized best-first search strategies and the optimality of A* , 1985, JACM.

[5]  Stephen F. Smith,et al.  Generating Space Telescope Observation Schedules , 1989 .

[6]  Emile H. L. Aarts,et al.  Simulated annealing and Boltzmann machines - a stochastic approach to combinatorial optimization and neural computing , 1990, Wiley-Interscience series in discrete mathematics and optimization.

[7]  Richard E. Korf,et al.  Performance of Linear-Space Search Algorithms , 1995, Artif. Intell..

[8]  Steven Minton,et al.  Minimizing Conflicts: A Heuristic Repair Method for Constraint Satisfaction and Scheduling Problems , 1992, Artif. Intell..

[9]  Claude E. Shannon,et al.  XXII. Programming a Computer for Playing Chess 1 , 1950 .

[10]  Steven Michael Rubin,et al.  The argos image understanding system. , 1978 .

[11]  Christos H. Papadimitriou,et al.  The Complexity of the Lin-Kernighan Heuristic for the Traveling Salesman Problem , 1992, SIAM J. Comput..

[12]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[13]  Mihalis Yannakakis,et al.  Simple Local Search Problems That are Hard to Solve , 1991, SIAM J. Comput..

[14]  Nils J. Nilsson,et al.  A Formal Basis for the Heuristic Determination of Minimum Cost Paths , 1968, IEEE Trans. Syst. Sci. Cybern..

[15]  Richard E. Korf,et al.  Space-efficient search algorithms , 1995, CSUR.

[16]  Edsger W. Dijkstra,et al.  A note on two problems in connexion with graphs , 1959, Numerische Mathematik.

[17]  Judea Pearl,et al.  Heuristics : intelligent search strategies for computer problem solving , 1984 .

[18]  Weixiong Zhang,et al.  Complete Anytime Beam Search , 1998, AAAI/IAAI.

[19]  Raj Reddy,et al.  Large-vocabulary speaker-independent continuous speech recognition: the sphinx system , 1988 .

[20]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .

[21]  R. Palmer,et al.  Introduction to the theory of neural computation , 1994, The advanced book program.

[22]  C. L. Liu,et al.  Introduction to Combinatorial Mathematics. , 1971 .

[23]  C. D. Gelatt,et al.  Optimization by Simulated Annealing , 1983, Science.

[24]  James L. McClelland,et al.  Parallel distributed processing: explorations in the microstructure of cognition, vol. 1: foundations , 1986 .

[25]  Richard E. Korf,et al.  Depth-First Iterative-Deepening: An Optimal Admissible Tree Search , 1985, Artif. Intell..

[26]  N. Metropolis,et al.  Equation of State Calculations by Fast Computing Machines , 1953, Resonance.

[27]  Gregory M. Provan,et al.  An Expected-Cost Analysis of Backtracking and Non-Backtracking Algorithms , 1991, IJCAI.

[28]  Thomas G. Dietterich,et al.  Inductive Learning of Structural Descriptions: Evaluation Criteria and Comparative Review of Selected Methods , 1981, Artif. Intell..

[29]  Hilary Putnam,et al.  A Computing Procedure for Quantification Theory , 1960, JACM.

[30]  Padhraic Smyth,et al.  From Data Mining to Knowledge Discovery in Databases , 1996, AI Mag..

[31]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[32]  Fred W. Glover,et al.  Future paths for integer programming and links to artificial intelligence , 1986, Comput. Oper. Res..

[33]  Brian W. Kernighan,et al.  An Effective Heuristic Algorithm for the Traveling-Salesman Problem , 1973, Oper. Res..