Alkali incorporation into Cu(In,Ga)Se2 determined by crystal orientation of Mo back contact: Implications for highly efficient photovoltaic devices

[1]  Tzu‐Ying Lin,et al.  Engineering Na-transport to achieve high efficiency in ultrathin Cu(In,Ga)Se2 solar cells with controlled preferred orientation , 2017 .

[2]  W. Warta,et al.  Solar cell efficiency tables (version 49) , 2017 .

[3]  Yi Jin,et al.  Optical Simulation and Experimental Verification of a Fresnel Solar Concentrator with a New Hybrid Second Optical Element , 2016 .

[4]  M. Jubault,et al.  New insights into the Mo/Cu(In,Ga)Se2 interface in thin film solar cells: Formation and properties of the MoSe2 interfacial layer. , 2016, The Journal of chemical physics.

[5]  Philip Jackson,et al.  Effects of heavy alkali elements in Cu(In,Ga)Se2 solar cells with efficiencies up to 22.6% , 2016 .

[6]  T. Unold,et al.  Impact of sodium on the device characteristics of low temperature-deposited Cu(In,Ga)Se2-solar cells , 2015 .

[7]  D. Neuville,et al.  Raman response of network modifier cations in alumino-silicate glasses. , 2015, The journal of physical chemistry. B.

[8]  Jae Hyun Kim,et al.  Electrical properties of CIGS/Mo junctions as a function of MoSe2 orientation and Na doping , 2014 .

[9]  T. Unold,et al.  Effect of sodium on material and device quality in low temperature deposited Cu In,Ga Se2 , 2013 .

[10]  T. Seong,et al.  Optical analysis of the microstructure of a Mo back contact for Cu(In,Ga)Se2 solar cells and its effects on Mo film properties and Na diffusivity , 2011 .

[11]  Hans-Werner Schock,et al.  Chalcogenide Photovoltaics: Physics, Technologies, and Thin Film Devices , 2011 .

[12]  R. Klenk,et al.  Influence of Na on Cu(In,Ga)Se2 solar cells grown on polyimide substrates at low temperature: Impact on the Cu(In,Ga)Se2/Mo interface , 2010 .

[13]  M. Döbeli,et al.  Formation and characterisation of MoSe2 for Cu(In,Ga)Se2 based solar cells , 2005 .

[14]  H. Zogg,et al.  Sodium incorporation strategies for CIGS growth at different temperatures , 2005 .

[15]  H. Schock,et al.  Substrate influence on Cu(In,Ga)Se2 film texture , 2005 .

[16]  Hans Zogg,et al.  Efficiency enhancement of Cu(In,Ga)Se2 solar cells due to post-deposition Na incorporation , 2004 .

[17]  A. Rockett,et al.  Na in selenized Cu(In,Ga)Se2 on Na-containing and Na-free glasses: distribution, grain structure, and device performances , 2000 .

[18]  D. Schroder Semiconductor Material and Device Characterization , 1990 .

[19]  Yun Sun,et al.  Adjustment of alkali element incorporations in Cu(In,Ga)Se-2 thin films with wet chemistry Mo oxide as a hosting reservoir , 2018 .

[20]  Bt Ahn Byung Tae Ahn,et al.  Characterization of Cu(In,Ga)Se-2 Solar Cells Grown on Na-Free Glass with an NaF Layer on a Mo Film , 2013 .

[21]  M. Edoff,et al.  Na Doping of CIGS Solar Cells Using Low Sodium-Doped Mo Layer , 2013, IEEE Journal of Photovoltaics.

[22]  Dh Shin Dong Hyeop Shin,et al.  Control of the Preferred Orientation of Cu(In,Ga)Se2 Thin Film by the Surface Modification of Mo Film , 2011 .

[23]  R. Murugan,et al.  Thermo-Raman investigations on structural transformations in hydrated MoO3 , 2000 .