Serious gaze

In this paper I review gaze-based interaction, distinguishing eye movement analysis from synthesis in virtual reality and games for serious applications. My focus is on four forms of gaze-based interaction: diagnostic, active, passive, and expressive. In discussing each, I briefly review seminal results and recent advancements, highlighting outstanding research problems.

[1]  Marc Levoy,et al.  Gaze-directed volume rendering , 1990, I3D '90.

[2]  Norman I. Badler,et al.  Eye Movements, Saccades, and Multiparty Conversations , 2008 .

[3]  Robert J. K. Jacob,et al.  What you look at is what you get: eye movement-based interaction techniques , 1990, CHI '90.

[4]  Shumin Zhai,et al.  Manual and gaze input cascaded (MAGIC) pointing , 1999, CHI '99.

[5]  Anthony M. Norcia,et al.  Directional selectivity in the cortex , 1998 .

[6]  R. Leigh,et al.  Triggering mechanisms in microsaccade and saccade generation: a novel proposal , 2011, Annals of the New York Academy of Sciences.

[7]  Dinesh K. Pai,et al.  Eyecatch: simulating visuomotor coordination for object interception , 2012, ACM Trans. Graph..

[8]  Veronica Sundstedt,et al.  Gazing at games: using eye tracking to control virtual characters , 2010, SIGGRAPH '10.

[9]  Donald H. House,et al.  Online 3D Gaze Localization on Stereoscopic Displays , 2014, TAP.

[10]  Donald H. House,et al.  Measuring vergence over stereoscopic video with a remote eye tracker , 2010, ETRA.

[11]  Krzysztof Krejtz,et al.  Visualizing Dynamic Ambient/Focal Attention with Coefficient $$K$$ , 2015, ETVIS.

[12]  Dave Roberts,et al.  Eye gaze in virtual environments: evaluating the need and initial work on implementation , 2009, Concurr. Comput. Pract. Exp..

[13]  Mel Slater,et al.  The impact of avatar realism and eye gaze control on perceived quality of communication in a shared immersive virtual environment , 2003, CHI '03.

[14]  Desney S. Tan,et al.  Foveated 3D graphics , 2012, ACM Trans. Graph..

[15]  Roel Vertegaal,et al.  The GAZE groupware system: mediating joint attention in multiparty communication and collaboration , 1999, CHI '99.

[16]  D. Noton,et al.  Eye movements and visual perception. , 1971, Scientific American.

[17]  Andrew T. Duchowski Hardware-accelerated real-time simulation of arbitrary visual fields , 2004, ETRA.

[18]  Manuel Menezes de Oliveira Neto,et al.  Photorealistic models for pupil light reflex and iridal pattern deformation , 2009, TOGS.

[19]  Pia Rotshtein,et al.  Identification of Emotional Facial Expressions: Effects of Expression, Intensity, and Sex on Eye Gaze , 2016, PloS one.

[20]  M A Just,et al.  A theory of reading: from eye fixations to comprehension. , 1980, Psychological review.

[21]  Pernilla Qvarfordt,et al.  Proceedings of the Ninth Biennial ACM Symposium on Eye Tracking Research & Applications , 2016, ETRA.

[22]  Hans-Peter Seidel,et al.  GazeStereo3D: seamless disparity manipulations , 2016, ACM Trans. Graph..

[23]  Benjamin Watson,et al.  Perceptually Driven Simplification Using Gaze-Directed Rendering , 2012 .

[24]  Brent Lance,et al.  A model of gaze for the purpose of emotional expression in virtual embodied agents , 2008, AAMAS.

[25]  Soraia Raupp Musse,et al.  Providing expressive gaze to virtual animated characters in interactive applications , 2008, CIE.

[26]  Ali Borji,et al.  State-of-the-Art in Visual Attention Modeling , 2013, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[27]  L. Stark,et al.  The main sequence, a tool for studying human eye movements , 1975 .

[28]  C. Mead,et al.  Neuromorphic Robot Vision with Mixed Analog- Digital Architecture , 2005 .

[29]  LAWRENCE STARK,et al.  Pupil Unrest: An Example of Noise in a Biological Servomechanism , 1958, Nature.

[30]  M. Just,et al.  Eye fixations and cognitive processes , 1976, Cognitive Psychology.

[31]  Stephen D. Landy Mapping the Universe. , 1999 .

[32]  Dmitry Sokolov,et al.  On Smooth 3D Frame Field Design , 2015, ArXiv.

[33]  Deborah J. Aks,et al.  Memory Across Eye-Movements: 1/f Dynamic in Visual Search , 2010 .

[34]  Ralf Engbert,et al.  Computational Modeling of Collicular Integration of Perceptual Responses and Attention in Microsaccades , 2012, The Journal of Neuroscience.

[35]  R. Baloh,et al.  Quantitative measurement of saccade amplitude, duration, and velocity , 1975, Neurology.

[36]  Li-Yi Wei,et al.  Point sampling with general noise spectrum , 2012, ACM Trans. Graph..

[37]  J. Harte,et al.  Self-similarity and clustering in the spatial distribution of species. , 2000, Science.

[38]  T. C. Nicholas Graham,et al.  Use of eye movements for video game control , 2006, ACE '06.

[39]  Vsevolod Peysakhovich Study of pupil diameter and eye movements to enhance flight safety. Etude de diamètre pupillaire et de mouvements oculaires pour la sécurité aérienne , 2016 .

[40]  Anand K. Gramopadhye,et al.  Gaze-augmented think-aloud as an aid to learning , 2012, CHI.

[41]  H. Collewijn,et al.  Binocular co‐ordination of human horizontal saccadic eye movements. , 1988, The Journal of physiology.

[42]  Heloir,et al.  The Uncanny Valley , 2019, The Animation Studies Reader.

[43]  Cai Hong-bin Real-time depth-of-field simulation on GPU , 2008 .

[44]  David M. Hoffman,et al.  The zone of comfort: Predicting visual discomfort with stereo displays. , 2011, Journal of vision.

[45]  Norman I. Badler,et al.  Look me in the Eyes: A Survey of Eye and Gaze Animation for Virtual Agents and Artificial Systems , 2014, Eurographics.

[46]  Lester C. Loschky,et al.  How late can you update gaze-contingent multiresolutional displays without detection? , 2007, TOMCCAP.

[47]  Mark Mon-Williams,et al.  Natural problems for stereoscopic depth perception in virtual environments , 1995, Vision Research.

[48]  Hans-Peter Seidel,et al.  Saccade landing position prediction for gaze-contingent rendering , 2017, ACM Trans. Graph..

[49]  Andrew T. Duchowski,et al.  Gaze Transition Entropy , 2015, TAP.

[50]  Donald H. House,et al.  Reducing visual discomfort of 3D stereoscopic displays with gaze-contingent depth-of-field , 2014, SAP.

[51]  Heng Zhou,et al.  Perceptual evaluation of synthetic gaze jitter , 2018, Comput. Animat. Virtual Worlds.

[52]  Joohwan Kim,et al.  Towards foveated rendering for gaze-tracked virtual reality , 2016, ACM Trans. Graph..

[53]  Thomas Martinetz,et al.  Gaze-contingent temporal filtering of video , 2006, ETRA '06.

[54]  Richard A. Bolt,et al.  A gaze-responsive self-disclosing display , 1990, CHI '90.

[55]  John R. Wilson,et al.  Effects of participating in virtual environmentsa review of current knowledge , 1996 .

[56]  J. Anliker,et al.  Eye movements - On-line measurement, analysis, and control , 1976 .

[57]  Anand K. Gramopadhye,et al.  3D eye movement analysis for VR visual inspection training , 2002, ETRA.

[58]  Norman I. Badler,et al.  Evaluating perceived trust from procedurally animated gaze , 2013, MIG.

[59]  Norman I. Badler,et al.  Eyes alive , 2002, ACM Trans. Graph..

[60]  Hans-Peter Seidel,et al.  Modeling and optimizing eye vergence response to stereoscopic cuts , 2014, ACM Trans. Graph..

[61]  Derek Bradley,et al.  High-quality capture of eyes , 2014, ACM Trans. Graph..

[62]  Koji Kashihara,et al.  Emotional attention modulates microsaccadic rate and direction , 2014, Psychological research.

[63]  P. Szendrő,et al.  Pink-noise behaviour of biosystems , 2001, European Biophysics Journal.

[64]  Iain Matthews,et al.  Modeling and animating eye blinks , 2011, TAP.

[65]  Andrew T. Duchowski,et al.  A rotary dial for gaze-based PIN entry , 2016, ETRA.

[66]  Usher,et al.  Dynamic pattern formation leads to 1/f noise in neural populations. , 1995, Physical review letters.

[67]  S K Rushton,et al.  Developing visual systems and exposure to virtual reality and stereo displays: some concerns and speculations about the demands on accommodation and vergence. , 1999, Applied ergonomics.

[68]  B. Tatler,et al.  Yarbus, eye movements, and vision , 2010, i-Perception.

[69]  Ian P. Howard,et al.  Seeing in Depth , 2008 .

[70]  Andrew T. Duchowski,et al.  Perceptual gaze extent & level of detail in VR: looking outside the box , 2002, SIGGRAPH '02.

[71]  Radoslaw Mantiuk,et al.  Gaze-Dependent Depth-of-Field Effect Rendering in Virtual Environments , 2011, SGDA.

[72]  Douglas Lanman,et al.  Focal surface displays , 2017, ACM Trans. Graph..

[73]  Qi Zhao,et al.  Noise Characterization, Modeling, and Reduction for In Vivo Neural Recording , 2009, NIPS.

[74]  R. Pritchard Stabilized images on the retina. , 1961, Scientific American.

[75]  Lester C. Loschky,et al.  User performance with gaze contingent multiresolutional displays , 2000, ETRA.

[76]  A. J. Van Opstal,et al.  Skewness of saccadic velocity profiles: A unifying parameter for normal and slow saccades , 1987, Vision Research.

[77]  Tsuneto Iwasaki,et al.  The tolerance range of binocular disparity on a 3D display based on the physiological characteristics of ocular accommodation , 2009, Displays.

[78]  Arzu Çöltekin,et al.  Foveated gaze-contingent displays for peripheral LOD management, 3D visualization, and stereo imaging , 2007, TOMCCAP.

[79]  Andrew T. Duchowski,et al.  Eye movement synthesis , 2016, ETRA.