Accurate simulation of delamination under mixed-mode loading using a cohesive model with a mode-dependent penalty stiffness

Abstract The cohesive zone model approach in conjunction with a damage formulation, has been used by many authors to simulate delamination using finite element codes. However, some models available in the literature have not been validated correctly under mixed-mode loading conditions. An incorrect selection of the parameters of the model can result in inaccurate simulation predictions. In this work, the cohesive formulation previously developed by the authors has been updated with a mode-dependent penalty stiffness to ensure accurate and reliable simulation results. Different loading scenarios are simulated to validate the accuracy of the new formulation.

[1]  P. Camanho,et al.  Numerical Simulation of Mixed-Mode Progressive Delamination in Composite Materials , 2003 .

[2]  Pedro P. Camanho,et al.  Simulation of delamination in composites under high-cycle fatigue , 2007 .

[3]  A. Turón,et al.  An experimental analysis of the fracture behavior of composite bonded joints in terms of cohesive laws , 2016 .

[4]  Pedro P. Camanho,et al.  A damage model for the simulation of delamination in advanced composites under variable-mode loading , 2006 .

[5]  P. Camanho,et al.  Simulation of delamination by means of cohesive elements using an explicit finite element code , 2009 .

[6]  Alex H. Barbat,et al.  A numerical procedure simulating RC structures reinforced with FRP using the serial/parallel mixing theory , 2008 .

[7]  Michael R Wisnom,et al.  A concise interface constitutive law for analysis of delamination and splitting in composite materials and its application to scaled notched tensile specimens , 2007 .

[8]  Jr. J. Crews,et al.  Mixed-Mode Bending Method for Delamination Testing , 1990 .

[9]  M. Paggi,et al.  A nonlinear finite thickness cohesive interface element for modeling delamination in fibre-reinforced composite laminates , 2017 .

[10]  Albert Turon,et al.  Assessment of energy dissipation during mixed-mode delamination growth using cohesive zone models , 2012 .

[11]  Bent F. Sørensen,et al.  Strength scaling of adhesive joints in polymer–matrix composites , 2009 .

[12]  J. Hutchinson,et al.  The relation between crack growth resistance and fracture process parameters in elastic-plastic solids , 1992 .

[13]  J. Renart,et al.  Nominal strength of quasi-brittle open hole specimens , 2012 .

[14]  N. Gascons,et al.  Size Effect Law and Critical Distance Theories to Predict the Nominal Strength of Quasibrittle Structures , 2013 .

[15]  L. J. Sluys,et al.  A phantom node formulation with mixed mode cohesive law for splitting in laminates , 2009 .

[16]  Garth N. Wells,et al.  A solid‐like shell element allowing for arbitrary delaminations , 2003 .

[17]  Jr. J. Crews,et al.  A Mixed-Mode Bending Apparatus for Delamination Testing , 1998 .

[18]  Damodar R. Ambur,et al.  Intralaminar and interlaminar progressive failure analyses of composite panels with circular cutouts , 2002 .

[19]  Albert Turon,et al.  Cohesive zone length of orthotropic materials undergoing delamination , 2016 .

[20]  Pedro P. Camanho,et al.  An engineering solution for mesh size effects in the simulation of delamination using cohesive zone models , 2007 .

[21]  Xiaopeng Xu,et al.  Numerical simulations of fast crack growth in brittle solids , 1994 .

[22]  Carlos G. Davila,et al.  Irreversible constitutive law for modeling the delamination process using interfacial surface discontinuities , 2004 .

[23]  M. Crisfield,et al.  Finite element interface models for the delamination analysis of laminated composites: mechanical and computational issues , 2001 .

[24]  Pedro P. Camanho,et al.  Accurate simulation of delamination growth under mixed-mode loading using cohesive elements: Definition of interlaminar strengths and elastic stiffness , 2010 .

[25]  M. Ortiz,et al.  FINITE-DEFORMATION IRREVERSIBLE COHESIVE ELEMENTS FOR THREE-DIMENSIONAL CRACK-PROPAGATION ANALYSIS , 1999 .

[26]  P. Hansen,et al.  DCB, 4ENF and MMB Delamination Characterisation of S2/8552 and IM7/8552 , 1999 .

[27]  Pedro P. Camanho,et al.  An Engineering Solution for Solving Mesh Size Effects in the Simulation of Delamination with Cohesive Zone Models , 2007 .

[28]  Erik Lund,et al.  Analysis of the integration of cohesive elements in regard to utilization of coarse mesh in laminated composite materials , 2014 .

[29]  J. R. Reeder,et al.  Nonlinear Analysis and Redesign of the Mixed-Mode Bending Delamination Test , 1991 .

[30]  M. A. Crisfield,et al.  Progressive Delamination Using Interface Elements , 1998 .

[31]  M. Benzeggagh,et al.  Measurement of mixed-mode delamination fracture toughness of unidirectional glass/epoxy composites with mixed-mode bending apparatus , 1996 .

[32]  T. Belytschko,et al.  Extended finite element method for cohesive crack growth , 2002 .

[33]  S. Hallett,et al.  A study on the influence of cohesive zone interface element strength parameters on mixed mode behaviour , 2012 .

[34]  John H. Crews,et al.  The mixed-mode bending method for delamination testing , 1989 .