Validation of thermal-transport modeling with direct-drive, planar-foil acceleration experiments on OMEGA.

We present for the first time the experimental validation of the nonlocal thermal-transport model for a National Ignition Facility relevant laser intensity of approximately 10(15) W/cm(2) on OMEGA. The measured thin target trajectories are in good agreement with predictions based on the nonlocal model over the full range of laser intensities from 2 x 10(14) to 10(15) W/cm(2}) The standard local thermal-transport model with a constant flux limiter of 0.06 disagrees with experimental measurements at a high intensity of approximately 10(15) W/cm(2) but agrees at lower intensities. These results show the significance of nonlocal effects for direct-drive ignition designs.

[1]  Robert L. McCrory,et al.  Indications of strongly flux-limited electron thermal conduction in laser- target experiments , 1975 .

[2]  Epperlein Kinetic theory of laser filamentation in plasmas. , 1990, Physical review letters.

[3]  Analysis of plasma density profiles and thermal transport in laser‐irradiated spherical targets , 1984 .

[4]  C. Capjack,et al.  Heat transport and electron distribution function in laser produced plasmas with hot spots , 2002 .

[5]  J. Virmont,et al.  Nonlocal heat transport due to steep temperature gradients , 1983 .

[6]  Rozmus,et al.  Nonlocal electron transport in a plasma. , 1995, Physical review letters.

[7]  Barukh Yaakobi,et al.  Rayleigh-Taylor Growth Stabilization in Direct-Drive Plastic Targets at Laser Intensities of ̃1×10 15 W/cm 2 , 2008 .

[8]  Gilbert W. Collins,et al.  Shock-timing experiments using double-pulse laser irradiation , 2006 .

[9]  Chaker,et al.  Electron distribution anisotropy in laser-produced plasmas from x-ray line polarization measurements. , 1992, Physical review letters.

[10]  M. J. Edwards,et al.  Effect of nonlocal transport on heat-wave propagation. , 2004, Physical review letters.

[11]  Hiroshi Azechi,et al.  Direct-drive hydrodynamic instability experiments on the GEKKO XII laser , 1997 .

[12]  Stephan Brunner,et al.  Simulations of Electron Transport in Laser Hot Spots , 2001 .

[13]  O. V. Batishchev,et al.  Nonlocal heat wave propagation due to skin layer plasma heating by short laser pulses , 2004, Comput. Phys. Commun..

[14]  S. Skupsky,et al.  Early stage of implosion in inertial confinement fusion: Shock timing and perturbation evolution , 2006 .

[15]  R. Short,et al.  Nonlocal heat transport effects on the filamentation of light in plasmas , 1992 .

[16]  Y. Lin,et al.  Distributed phase plates for super-Gaussian focal-plane irradiance profiles. , 1995, Optics letters.

[17]  J. Delettrez Thermal electron transport in direct-drive laser fusion , 1986 .

[18]  J. Matte,et al.  Nonlocal electron heat transport and electron–ion energy transfer in the presence of strong collisional heating , 2004 .

[19]  Denis G. Colombant,et al.  High-gain direct-drive target design for laser fusion , 2000 .

[20]  Hiroshi Azechi,et al.  Reduction of the Rayleigh-Taylor instability growth with cocktail color irradiation , 2007 .

[21]  Bell,et al.  Two-dimensional nonlocal electron transport in laser-produced plasmas. , 1988, Physical review letters.

[22]  Samuel A. Letzring,et al.  Initial performance results of the OMEGA laser system , 1997 .

[23]  V. Goncharov,et al.  Performance of Direct-Drive Cryogenic Targets on OMEGA , 2007 .

[24]  Laurent Divol,et al.  Thomson-scattering measurements of high electron temperature hohlraum plasmas for laser-plasma interaction studies , 2006 .

[25]  L. Spitzer,et al.  TRANSPORT PHENOMENA IN A COMPLETELY IONIZED GAS , 1953 .

[26]  R. S. Craxton,et al.  Time-resolved absorption in cryogenic and room-temperature direct-drive implosionsa) , 2008 .

[27]  Hiroshi Azechi,et al.  Kinetic effects on the electron thermal transport in ignition target design , 1996 .

[28]  Robert L. McCrory,et al.  Self-consistent reduction of the Spitzer-Härm electron thermal heat flux in steep temperature gradients in laser-produced plasmas , 1981 .

[29]  W. Rozmus,et al.  Relaxation of a thermal perturbation in a collisional plasma , 2006 .

[30]  J. Lindl Development of the indirect‐drive approach to inertial confinement fusion and the target physics basis for ignition and gain , 1995 .

[31]  Paul A. Jaanimagi,et al.  Experimental investigation of smoothing by spectral dispersion , 2000 .

[32]  F Durut,et al.  Revisiting nonlocal electron-energy transport in inertial-fusion conditions. , 2007, Physical review letters.

[33]  S. Skupsky,et al.  Reduction of laser imprinting using polarization smoothing on a solid-state fusion laser , 1999 .

[34]  T. S. Perry,et al.  Optimizing data recording for the NIF core diagnostic x-ray streak camera , 2001 .

[35]  W. Rozmus,et al.  Nonlocal electron transport in laser heated plasmas , 1998 .

[36]  T Sakaiya,et al.  Ablative Rayleigh-Taylor instability at short wavelengths observed with moiré interferometry. , 2002, Physical review letters.

[37]  F. Alouani-Bibi,et al.  Different Fokker-Planck approaches to simulate electron transport in plasmas , 2004, Comput. Phys. Commun..

[38]  J. D. Kilkenny,et al.  Measurement of a Dispersion Curve for Linear-Regime Rayleigh-Taylor Growth Rates in Laser-Driven Planar Targets , 1997 .

[39]  E. Michael Campbell,et al.  The National Ignition Facility - applications for inertial fusion energy and high-energy-density science , 1999 .

[40]  W. Manheimer,et al.  Test of models for electron transport in laser produced plasmas , 2005 .

[41]  C Stoeckl,et al.  Time-dependent electron thermal flux inhibition in direct-drive laser implosions. , 2003, Physical review letters.

[42]  A. Bell,et al.  Nonlocal magnetic-field generation in plasmas without density gradients. , 2002, Physical review letters.

[43]  R. G. Evans,et al.  Electron energy transport in steep temperature gradients in laser-produced plasmas , 1981 .

[44]  Guy Schurtz,et al.  A nonlocal electron conduction model for multidimensional radiation hydrodynamics codes , 2000 .