Ih-mediated depolarization enhances the temporal precision of neuronal integration

[1]  H. Adesnik,et al.  Input normalization by global feedforward inhibition expands cortical dynamic range , 2009, Nature Neuroscience.

[2]  L. Abbott,et al.  Hyperpolarization-activated cation channels inhibit EPSPs by interactions with M-type K+ channels , 2009, Nature Neuroscience.

[3]  Christophe Bernard,et al.  h channel-dependent deficit of theta oscillation resonance and phase shift in temporal lobe epilepsy , 2009, Neurobiology of Disease.

[4]  D. Rusakov,et al.  Receptor actions of synaptically released glutamate: the role of transporters on the scale from nanometers to microns. , 2008, Biophysical journal.

[5]  S. Siegelbaum,et al.  HCN1 Channels Constrain Synaptically Evoked Ca2+ Spikes in Distal Dendrites of CA1 Pyramidal Neurons , 2007, Neuron.

[6]  John W. Miller,et al.  Progressive Dendritic HCN Channelopathy during Epileptogenesis in the Rat Pilocarpine Model of Epilepsy , 2007, The Journal of Neuroscience.

[7]  Robert A Pearce,et al.  Active and Passive Membrane Properties and Intrinsic Kinetics Shape Synaptic Inhibition in Hippocampal CA1 Pyramidal Neurons , 2006, The Journal of Neuroscience.

[8]  Peter Jonas,et al.  Hyperpolarization‐activated cation channels in fast‐spiking interneurons of rat hippocampus , 2006, The Journal of physiology.

[9]  K. Mackie,et al.  Experimental febrile seizures are precipitated by a hyperthermia-induced respiratory alkalosis , 2006, Nature Medicine.

[10]  P. Jonas,et al.  Shunting Inhibition Improves Robustness of Gamma Oscillations in Hippocampal Interneuron Networks by Homogenizing Firing Rates , 2006, Neuron.

[11]  Boris S. Gutkin,et al.  Phase Dependent Sign Changes of GABAergic Synaptic Input Explored In-Silicio and In-Vitro , 2005, Journal of Computational Neuroscience.

[12]  Dimitri M Kullmann,et al.  Hebbian LTP in feed-forward inhibitory interneurons and the temporal fidelity of input discrimination , 2005, Nature Neuroscience.

[13]  Michael Häusser,et al.  Feed‐forward inhibition shapes the spike output of cerebellar Purkinje cells , 2005, The Journal of physiology.

[14]  Matthew F. Nolan,et al.  A Behavioral Role for Dendritic Integration HCN1 Channels Constrain Spatial Memory and Plasticity at Inputs to Distal Dendrites of CA1 Pyramidal Neurons , 2004, Cell.

[15]  D. Johnston,et al.  Seizure-Induced Plasticity of h Channels in Entorhinal Cortical Layer III Pyramidal Neurons , 2004, Neuron.

[16]  W. Wadman,et al.  Homeostatic scaling of neuronal excitability by synaptic modulation of somatic hyperpolarization-activated Ih channels. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[17]  S. Siegelbaum,et al.  Hyperpolarization-activated cation currents: from molecules to physiological function. , 2003, Annual review of physiology.

[18]  Matthew F. Nolan,et al.  The Hyperpolarization-Activated HCN1 Channel Is Important for Motor Learning and Neuronal Integration by Cerebellar Purkinje Cells , 2003, Cell.

[19]  G. Stuart,et al.  Voltage- and Site-Dependent Control of the Somatic Impact of Dendritic IPSPs , 2003, The Journal of Neuroscience.

[20]  H. Lüscher,et al.  Timing and precision of spike initiation in layer V pyramidal cells of the rat somatosensory cortex. , 2003, Cerebral cortex.

[21]  G. Stuart,et al.  Excitatory Actions of GABA in the Cortex , 2003, Neuron.

[22]  D. Johnston,et al.  Pharmacological upregulation of h-channels reduces the excitability of pyramidal neuron dendrites , 2002, Nature Neuroscience.

[23]  P. Castillo,et al.  Assessing the role of Ih channels in synaptic transmission and mossy fiber LTP , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[24]  M. Biel,et al.  Differential and age-dependent expression of hyperpolarization-activated, cyclic nucleotide-gated cation channel isoforms 1–4 suggests evolving roles in the developing rat hippocampus , 2001, Neuroscience.

[25]  M. Scanziani,et al.  Enforcement of Temporal Fidelity in Pyramidal Cells by Somatic Feed-Forward Inhibition , 2001, Science.

[26]  A. Hoffman,et al.  Contribution of the hyperpolarization-activated current (I(h)) to membrane potential and GABA release in hippocampal interneurons. , 2001, Journal of neurophysiology.

[27]  Ivan Soltesz,et al.  Persistently modified h-channels after complex febrile seizures convert the seizure-induced enhancement of inhibition to hyperexcitability , 2001, Nature Medicine.

[28]  B. Robertson,et al.  Hyperpolarization‐activated currents in presynaptic terminals of mouse cerebellar basket cells , 2000, The Journal of physiology.

[29]  G. Stuart,et al.  Site independence of EPSP time course is mediated by dendritic I(h) in neocortical pyramidal neurons. , 2000, Journal of neurophysiology.

[30]  J. Magee Dendritic Ih normalizes temporal summation in hippocampal CA1 neurons , 1999, Nature Neuroscience.

[31]  J. A. Payne,et al.  The K+/Cl− co-transporter KCC2 renders GABA hyperpolarizing during neuronal maturation , 1999, Nature.

[32]  J. Magee Dendritic Hyperpolarization-Activated Currents Modify the Integrative Properties of Hippocampal CA1 Pyramidal Neurons , 1998, The Journal of Neuroscience.

[33]  D. DiFrancesco,et al.  Action of the hyperpolarization-activated current (Ih) blocker ZD 7288 in hippocampal CA1 neurons , 1997, Pflügers Archiv.

[34]  Nicholas T. Carnevale,et al.  The NEURON Simulation Environment , 1997, Neural Computation.

[35]  G. Buzsáki,et al.  Gamma Oscillation by Synaptic Inhibition in a Hippocampal Interneuronal Network Model , 1996, The Journal of Neuroscience.

[36]  W. Singer,et al.  Integrator or coincidence detector? The role of the cortical neuron revisited , 1996, Trends in Neurosciences.

[37]  D. Reichling,et al.  Perforated-patch recording with gramicidin avoids artifactual changes in intracellular chloride concentration , 1995, Journal of Neuroscience Methods.

[38]  D DiFrancesco,et al.  Properties of the hyperpolarization-activated current in rat hippocampal CA1 pyramidal cells. , 1993, Journal of neurophysiology.

[39]  J. Voipio,et al.  The role of bicarbonate in GABAA receptor‐mediated IPSPs of rat neocortical neurones. , 1993, The Journal of physiology.

[40]  N. Spruston,et al.  Perforated patch-clamp analysis of the passive membrane properties of three classes of hippocampal neurons. , 1992, Journal of neurophysiology.

[41]  G. Buzsáki Feed-forward inhibition in the hippocampal formation , 1984, Progress in Neurobiology.

[42]  J. Eccles The Ferrier Lecture: The nature of central inhibition , 1961, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[43]  I. Ial,et al.  Nature Communications , 2010, Nature Cell Biology.

[44]  Peter Somogyi,et al.  Interneurons hyperpolarize pyramidal cells along their entire somatodendritic axis , 2009, Nature Neuroscience.

[45]  R. Pearce,et al.  Molecular Active and Passive Membrane Properties and Intrinsic Kinetics Shape Synaptic Inhibition in Hippocampal CA 1 Pyramidal Neurons , 2006 .

[46]  Hans R. Gelderblom,et al.  Enforcement of Temporal Fidelity in Pyramidal Cells by Somatic Feed-Forward Inhibition , 2001 .

[47]  Jeffrey C. Magee,et al.  Dendritic Ih normalizes temporal summation in hippocampal CA1 neurons , 1999, Nature Neuroscience.

[48]  H. Pape,et al.  Queer current and pacemaker: the hyperpolarization-activated cation current in neurons. , 1996, Annual review of physiology.

[49]  M. Abeles Role of the cortical neuron: integrator or coincidence detector? , 1982, Israel journal of medical sciences.