Observing ocean heat content using satellite gravity and altimetry

[1] A method for combining satellite altimetry observations with satellite measurements of the Earth’s time-varying gravity to give improved estimates of the ocean’s heat storage is presented. Over the ocean the time-variable component of the geoid can be related to the time-varying bottom pressure. The methodology of estimating the ocean’s time-varying heat storage using altimetric observations alone is modified to include observations of bottom pressure. A detailed error analysis of the methodology is undertaken. It is found that the inclusion of bottom pressure improves the ocean heat storage estimates. The improvement comes from a better estimation of the steric sea surface height by the inclusion of bottom pressure in the calculation, over using the altimeter-observed sea surface height alone. On timescales of the annual cycle and shorter the method works particularly well. However, long-timescale changes in the heat storage are poorly reproduced because of deficiencies in the methodology and the presence of contaminating signals in the bottom pressure observations. INDEX TERMS: 4556 Oceanography: Physical: Sea level variations; 1223 Geodesy and Gravity: Ocean/Earth/atmosphere interactions (3339); 1227 Geodesy and Gravity: Planetary geodesy and gravity (5420, 5714, 6019); 1243 Geodesy and Gravity: Space geodetic surveys; 4275 Oceanography: General: Remote sensing and electromagnetic processes (0689); KEYWORDS: ocean heat content, altimetry, satellite gravity, steric height, remote sensing

[1]  S. Jayne,et al.  A method of inferring changes in deep ocean currents from satellite measurements of time‐variable gravity , 2002 .

[2]  S. Swenson,et al.  Methods for inferring regional surface‐mass anomalies from Gravity Recovery and Climate Experiment (GRACE) measurements of time‐variable gravity , 2002 .

[3]  D. Webb,et al.  An ocean resonance in the Indian sector of the Southern Ocean , 2002 .

[4]  P. Milly,et al.  Global Modeling of Land Water and Energy Balances. Part III: Interannual Variability , 2002 .

[5]  D. Webb,et al.  An Ocean Resonance in the Southeast Pacific , 2002 .

[6]  J. Wahr,et al.  Can surface pressure be used to remove atmospheric , 2001 .

[7]  B. Chao,et al.  Nontidal oceanic contributions to gravitational field changes: Predictions of the Parallel Ocean Climate Model , 2001 .

[8]  J. Pringle Cross-shelf eddy heat transport in a wind-free coastal ocean undergoing winter time cooling , 2001 .

[9]  F. Bryan,et al.  Short‐period oceanic circulation: Implications for satellite altimetry , 2000 .

[10]  Carl Wunsch,et al.  De‐aliasing of global high frequency barotropic motions in altimeter observations , 2000 .

[11]  Andreas Oschlies,et al.  Seasonal sea surface height variability in the North Atlantic Ocean , 2000 .

[12]  W. Liu,et al.  Importance of salinity measurements in the heat storage estimation from TOPEX/POSEIDON , 2000 .

[13]  C. Wunsch,et al.  Satellite peers through the oceans from space , 2000 .

[14]  W. Liu,et al.  Characterization and validation of the heat storage variability from TOPEX/Poseidon at four oceanographic sites , 2000 .

[15]  LuAnne Thompson,et al.  Contributions of wind forcing, waves, and surface heating to sea surface height observations in the Pacific Ocean , 1999 .

[16]  J. Wahr,et al.  Coupled Pattern Analysis of Sea Surface Temperature and TOPEX/Poseidon Sea Surface Height , 1999 .

[17]  R. Ponte A preliminary model study of the large‐scale seasonal cycle in bottom pressure over the global ocean , 1999 .

[18]  F. Bryan,et al.  Time variability of the Earth's gravity field: Hydrological and oceanic effects and their possible detection using GRACE , 1998 .

[19]  Christophe Maes,et al.  Estimating the influence of salinity on sea level anomaly in the ocean , 1998 .

[20]  Byron D. Tapley,et al.  Measuring heat storage changes in the equatorial Pacific: A comparison between TOPEX altimetry and Tropical Atmosphere‐Ocean buoys , 1998 .

[21]  D. Bromwich,et al.  Polar Climate Simulation of the NCAR CCM3 , 1998 .

[22]  Carl Wunsch,et al.  SATELLITE ALTIMETRY, THE MARINE GEOID, AND THE OCEANIC GENERAL CIRCULATION , 1998 .

[23]  Ichiro Fukumori,et al.  Nature of global large‐scale sea level variability in relation to atmospheric forcing: A modeling study , 1998 .

[24]  Gary S. E. Lagerloef,et al.  Satellite Gravity and the Geosphere: Contributions to the Study of the Solid Earth and Its Fluid Earth , 1998 .

[25]  James C. McWilliams,et al.  Sensitivity to Surface Forcing and Boundary Layer Mixing in a Global Ocean Model: Annual-Mean Climatology , 1997 .

[26]  Detlef Stammer,et al.  Steric and wind-induced changes in TOPEX/POSEIDON large-scale sea surface topography observations , 1997 .

[27]  D. Chambers,et al.  Long‐period ocean heat storage rates and basin‐scale heat fluxes from TOPEX , 1997 .

[28]  C. Wunsch,et al.  Atmospheric loading and the oceanic “inverted barometer” effect , 1997 .

[29]  Liping Wang,et al.  Can the Topex/Poseidon altimetry data be used to estimate air‐sea heat flux in the North Atlantic? , 1997 .

[30]  Richard Smith,et al.  Global Ocean Circulation from Satellite Altimetry and High-Resolution Computer Simulation , 1996 .

[31]  Chester J. Koblinsky,et al.  Empirical orthogonal function analysis of global TOPEX/POSEIDON altimeter data and implications for detection of global sea level rise , 1996 .

[32]  Chang-Kou Tai,et al.  Inferring interannual changes in global upper ocean heat storage from TOPEX altimetry , 1995 .

[33]  R. Davidson,et al.  A note on the barotropic response of sea level to time‐dependent wind forcing , 1995 .

[34]  Yi Chao,et al.  A Comparison Between the TOPEX/POSEIDON Data and a Global Ocean General Circulation , 1995 .

[35]  John L. Lillibridge,et al.  TOPEX/POSEIDON: The 2‐cm solution , 1994 .

[36]  W. Large,et al.  Oceanic vertical mixing: a review and a model with a nonlocal boundary layer parameterization , 1994 .

[37]  R. Greatbatch A note on the representation of steric sea level in models that conserve volume rather than mass , 1994 .

[38]  Thomas M. Smith,et al.  Improved Global Sea Surface Temperature Analyses Using Optimum Interpolation , 1994 .

[39]  J. Dukowicz,et al.  Implicit free‐surface method for the Bryan‐Cox‐Semtner ocean model , 1994 .

[40]  Richard S. Gross,et al.  Changes in the Earth's rotation and low-degree gravitational field induced by earthquakes , 1987 .

[41]  Jean-René Donguy,et al.  Relations Between Sea Level, Thermocline Depth, Heat Content, and Dynamic Height in the Tropical Pacific Ocean , 1985 .

[42]  A. E. Gill Atmosphere-Ocean Dynamics , 1982 .

[43]  C. Jekeli Alternative methods to smooth the Earth's gravity field , 1981 .

[44]  A. E. Gill,et al.  The theory of the seasonal variability in the ocean , 1973 .

[45]  W. Farrell Deformation of the Earth by surface loads , 1972 .

[46]  J. Smagorinsky,et al.  GENERAL CIRCULATION EXPERIMENTS WITH THE PRIMITIVE EQUATIONS , 1963 .

[47]  James C. McWilliams,et al.  Anisotropic horizontal viscosity for ocean models , 2003 .

[48]  D. Chelton,et al.  Chapter 2 Large-Scale Ocean Circulation , 2001 .

[49]  B. Chao,et al.  Nontidal oceanic contributions to gravitational field changes , 2001 .

[50]  Byron D. Tapley,et al.  Seasonal sea level change from TOPEX/Poseidon observation and thermal contribution , 2000 .

[51]  S. Riser,et al.  The ARGO Project: Global Ocean Observations for Understanding and Prediction of Climate Variability. Report for Calendar Year 2004 , 2000 .

[52]  J. S. Godfrey,et al.  Regional Oceanography: An Introduction , 1994 .

[53]  M. Tomczak CHAPTER 1 – Introduction: What drives the ocean currents? , 1994 .

[54]  P. Gent,et al.  Isopycnal mixing in ocean circulation models , 1990 .

[55]  S. Gorshkov,et al.  World ocean atlas , 1976 .

[56]  G. Veronis Large Scale Ocean Circulation , 1973 .