A Time-Spectral Algorithm for Fractional Wave Problems
暂无分享,去创建一个
Xiaoping Xie | Hao Luo | Binjie Li | Xiaoping Xie | Binjie Li | Hao Luo
[1] Santos B. Yuste,et al. Weighted average finite difference methods for fractional diffusion equations , 2004, J. Comput. Phys..
[2] Zhi-Zhong Sun,et al. A new fractional numerical differentiation formula to approximate the Caputo fractional derivative and its applications , 2014, J. Comput. Phys..
[3] Philippe G. Ciarlet,et al. The finite element method for elliptic problems , 2002, Classics in applied mathematics.
[4] Zhibo Wang,et al. Compact difference schemes for the modified anomalous fractional sub-diffusion equation and the fractional diffusion-wave equation , 2013, J. Comput. Phys..
[5] Jie Shen,et al. Spectral Methods: Algorithms, Analysis and Applications , 2011 .
[6] Yin Yang,et al. Spectral collocation method for the time-fractional diffusion-wave equation and convergence analysis , 2017, Comput. Math. Appl..
[7] Jiwei Zhang,et al. Superconvergence of Finite Element Approximations for the Fractional Diffusion-Wave Equation , 2017, J. Sci. Comput..
[8] Zhi‐zhong Sun,et al. A fully discrete difference scheme for a diffusion-wave system , 2006 .
[9] Fawang Liu,et al. A Novel High Order Space-Time Spectral Method for the Time Fractional Fokker-Planck Equation , 2015, SIAM J. Sci. Comput..
[10] Fawang Liu,et al. A Fourier method for the fractional diffusion equation describing sub-diffusion , 2007, J. Comput. Phys..
[11] O. Marichev,et al. Fractional Integrals and Derivatives: Theory and Applications , 1993 .
[12] Santos B. Yuste,et al. An Explicit Finite Difference Method and a New von Neumann-Type Stability Analysis for Fractional Diffusion Equations , 2004, SIAM J. Numer. Anal..
[13] Weihua Deng,et al. Finite Element Method for the Space and Time Fractional Fokker-Planck Equation , 2008, SIAM J. Numer. Anal..
[14] M. Meerschaert,et al. Finite difference approximations for fractional advection-dispersion flow equations , 2004 .
[15] Zhi-Zhong Sun,et al. Finite difference methods for the time fractional diffusion equation on non-uniform meshes , 2014, J. Comput. Phys..
[16] Han Zhou,et al. A class of second order difference approximations for solving space fractional diffusion equations , 2012, Math. Comput..
[17] I. Podlubny. Fractional differential equations , 1998 .
[18] Xiaoping Xie,et al. Analysis of a Time-Stepping Scheme for Time Fractional Diffusion Problems with Nonsmooth Data , 2018, SIAM J. Numer. Anal..
[19] Jie Shen,et al. Generalized Jacobi functions and their applications to fractional differential equations , 2014, Math. Comput..
[20] T. A. Zang,et al. Spectral Methods: Fundamentals in Single Domains , 2010 .
[21] Xianjuan Li,et al. A Space-Time Spectral Method for the Time Fractional Diffusion Equation , 2009, SIAM J. Numer. Anal..
[22] Chuanju Xu,et al. Finite difference/spectral approximations for the time-fractional diffusion equation , 2007, J. Comput. Phys..
[23] Jianfei Huang,et al. Two finite difference schemes for time fractional diffusion-wave equation , 2013, Numerical Algorithms.
[24] Santos B. Yuste,et al. On an explicit finite difference method for fractional diffusion equations , 2003, ArXiv.
[25] V. Ervin,et al. Variational formulation for the stationary fractional advection dispersion equation , 2006 .
[26] Xuan Zhao,et al. Compact Alternating Direction Implicit Scheme for the Two-Dimensional Fractional Diffusion-Wave Equation , 2012, SIAM J. Numer. Anal..
[27] Jianfei Huang,et al. Numerical solution of fractional diffusion-wave equation based on fractional multistep method , 2014 .
[28] George E. Karniadakis,et al. Fractional Spectral Collocation Method , 2014, SIAM J. Sci. Comput..
[29] Fawang Liu,et al. The Use of Finite Difference/Element Approaches for Solving the Time-Fractional Subdiffusion Equation , 2013, SIAM J. Sci. Comput..
[30] L. Tartar. An Introduction to Sobolev Spaces and Interpolation Spaces , 2007 .