A Time-Spectral Algorithm for Fractional Wave Problems

This paper develops a high-accuracy algorithm for time fractional wave problems, which employs a spectral method in the temporal discretization and a finite element method in the spatial discretization. Moreover, stability and convergence of this algorithm are derived, and numerical experiments are performed, demonstrating the exponential decay in the temporal discretization error provided the solution is sufficiently smooth.

[1]  Santos B. Yuste,et al.  Weighted average finite difference methods for fractional diffusion equations , 2004, J. Comput. Phys..

[2]  Zhi-Zhong Sun,et al.  A new fractional numerical differentiation formula to approximate the Caputo fractional derivative and its applications , 2014, J. Comput. Phys..

[3]  Philippe G. Ciarlet,et al.  The finite element method for elliptic problems , 2002, Classics in applied mathematics.

[4]  Zhibo Wang,et al.  Compact difference schemes for the modified anomalous fractional sub-diffusion equation and the fractional diffusion-wave equation , 2013, J. Comput. Phys..

[5]  Jie Shen,et al.  Spectral Methods: Algorithms, Analysis and Applications , 2011 .

[6]  Yin Yang,et al.  Spectral collocation method for the time-fractional diffusion-wave equation and convergence analysis , 2017, Comput. Math. Appl..

[7]  Jiwei Zhang,et al.  Superconvergence of Finite Element Approximations for the Fractional Diffusion-Wave Equation , 2017, J. Sci. Comput..

[8]  Zhi‐zhong Sun,et al.  A fully discrete difference scheme for a diffusion-wave system , 2006 .

[9]  Fawang Liu,et al.  A Novel High Order Space-Time Spectral Method for the Time Fractional Fokker-Planck Equation , 2015, SIAM J. Sci. Comput..

[10]  Fawang Liu,et al.  A Fourier method for the fractional diffusion equation describing sub-diffusion , 2007, J. Comput. Phys..

[11]  O. Marichev,et al.  Fractional Integrals and Derivatives: Theory and Applications , 1993 .

[12]  Santos B. Yuste,et al.  An Explicit Finite Difference Method and a New von Neumann-Type Stability Analysis for Fractional Diffusion Equations , 2004, SIAM J. Numer. Anal..

[13]  Weihua Deng,et al.  Finite Element Method for the Space and Time Fractional Fokker-Planck Equation , 2008, SIAM J. Numer. Anal..

[14]  M. Meerschaert,et al.  Finite difference approximations for fractional advection-dispersion flow equations , 2004 .

[15]  Zhi-Zhong Sun,et al.  Finite difference methods for the time fractional diffusion equation on non-uniform meshes , 2014, J. Comput. Phys..

[16]  Han Zhou,et al.  A class of second order difference approximations for solving space fractional diffusion equations , 2012, Math. Comput..

[17]  I. Podlubny Fractional differential equations , 1998 .

[18]  Xiaoping Xie,et al.  Analysis of a Time-Stepping Scheme for Time Fractional Diffusion Problems with Nonsmooth Data , 2018, SIAM J. Numer. Anal..

[19]  Jie Shen,et al.  Generalized Jacobi functions and their applications to fractional differential equations , 2014, Math. Comput..

[20]  T. A. Zang,et al.  Spectral Methods: Fundamentals in Single Domains , 2010 .

[21]  Xianjuan Li,et al.  A Space-Time Spectral Method for the Time Fractional Diffusion Equation , 2009, SIAM J. Numer. Anal..

[22]  Chuanju Xu,et al.  Finite difference/spectral approximations for the time-fractional diffusion equation , 2007, J. Comput. Phys..

[23]  Jianfei Huang,et al.  Two finite difference schemes for time fractional diffusion-wave equation , 2013, Numerical Algorithms.

[24]  Santos B. Yuste,et al.  On an explicit finite difference method for fractional diffusion equations , 2003, ArXiv.

[25]  V. Ervin,et al.  Variational formulation for the stationary fractional advection dispersion equation , 2006 .

[26]  Xuan Zhao,et al.  Compact Alternating Direction Implicit Scheme for the Two-Dimensional Fractional Diffusion-Wave Equation , 2012, SIAM J. Numer. Anal..

[27]  Jianfei Huang,et al.  Numerical solution of fractional diffusion-wave equation based on fractional multistep method , 2014 .

[28]  George E. Karniadakis,et al.  Fractional Spectral Collocation Method , 2014, SIAM J. Sci. Comput..

[29]  Fawang Liu,et al.  The Use of Finite Difference/Element Approaches for Solving the Time-Fractional Subdiffusion Equation , 2013, SIAM J. Sci. Comput..

[30]  L. Tartar An Introduction to Sobolev Spaces and Interpolation Spaces , 2007 .