Spectro-refractometry of individual microscopic objects using swept-source quantitative phase imaging.

We present a novel spectroscopic quantitative phase imaging technique with a wavelength swept-source, referred to as swept-source diffraction phase microscopy (ssDPM), for quantifying the optical dispersion of microscopic individual samples. Employing the swept-source and the principle of common-path interferometry, ssDPM measures the multispectral full-field quantitative phase imaging and spectroscopic microrefractometry of transparent microscopic samples in the visible spectrum with a wavelength range of 450-750 nm and a spectral resolution of less than 8 nm. With unprecedented precision and sensitivity, we demonstrate the quantitative spectroscopic microrefractometry of individual polystyrene beads, 30% bovine serum albumin solution, and healthy human red blood cells.

[1]  Gabriel Popescu,et al.  Measurement of red blood cell mechanics during morphological changes , 2010, Proceedings of the National Academy of Sciences.

[2]  C. Fang-Yen,et al.  Label-free imaging of membrane potential using membrane electromotility. , 2012, Biophysical journal.

[3]  Subra Suresh,et al.  Anisotropic light scattering of individual sickle red blood cells. , 2012, Journal of biomedical optics.

[4]  H. Pham,et al.  Spectroscopic diffraction phase microscopy. , 2012, Optics letters.

[5]  Yongjin Sung,et al.  Quantitative dispersion microscopy , 2010, Biomedical optics express.

[6]  Huafeng Ding,et al.  Effective 3D viscoelasticity of red blood cells measured by diffraction phase microscopy , 2011, Biomedical optics express.

[7]  Gabriel Popescu,et al.  Coherence properties of red blood cell membrane motions. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[8]  Gabriel Popescu,et al.  Erythrocyte structure and dynamics quantified by Hilbert phase microscopy. , 2005, Journal of biomedical optics.

[9]  Nir S. Gov,et al.  Metabolic remodeling of the human red blood cell membrane , 2010, Proceedings of the National Academy of Sciences.

[10]  Yongkeun Park,et al.  Ultraviolet refractometry using field-based light scattering spectroscopy. , 2009, Optics express.

[11]  YongKeun Park,et al.  Real-time quantitative phase imaging with a spatial phase-shifting algorithm. , 2011, Optics letters.

[12]  Gabriel Popescu,et al.  Imaging red blood cell dynamics by quantitative phase microscopy. , 2008, Blood cells, molecules & diseases.

[13]  R. Barer Interference Microscopy and Mass Determination , 1952, Nature.

[14]  Gabriel Popescu,et al.  Static and dynamic light scattering of healthy and malaria-parasite invaded red blood cells. , 2010, Journal of biomedical optics.

[15]  Yizheng Zhu,et al.  Quantitative phase spectroscopy , 2012, Biomedical optics express.

[16]  Gabriel Popescu,et al.  Optical Sensing of Red Blood Cell Dynamics , 2011 .

[17]  Dalip Singh Mehta,et al.  Quantitative phase imaging of human red blood cells using phase-shifting white light interference microscopy with colour fringe analysis , 2012 .

[18]  Eric Morales,et al.  Crosstalk Between PKA and Epac Regulates the Phenotypic Maturation and Function of Human Dendritic Cells , 2010, The Journal of Immunology.

[19]  Gabriel Popescu,et al.  Effective temperature of red-blood-cell membrane fluctuations. , 2011, Physical review letters.

[20]  Gabriel Popescu,et al.  Optical imaging of cell mass and growth dynamics. , 2008, American journal of physiology. Cell physiology.

[21]  M. Wojtkowski,et al.  Ultra high-speed swept source OCT imaging of the anterior segment of human eye at 200 kHz with adjustable imaging range. , 2009, Optics express.

[22]  W J BOWEN,et al.  The absorption spectra and extinction coefficients of myoglobin. , 1949, The Journal of biological chemistry.

[23]  Francisco E. Robles,et al.  Molecular imaging true-colour spectroscopic optical coherence tomography. , 2011, Nature photonics.

[24]  V. Lauer New approach to optical diffraction tomography yielding a vector equation of diffraction tomography and a novel tomographic microscope , 2002, Journal of microscopy.

[25]  Gabriel Popescu,et al.  Measurement of the nonlinear elasticity of red blood cell membranes. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[26]  S. Nir,et al.  Dispersion equation and polarizability of bovine serum albumin from measurements of refractive indices , 1974 .

[27]  I. Nikolov,et al.  Analysis of the dispersion of optical plastic materials , 2007 .

[28]  Kyoohyun Kim,et al.  Synthetic Fourier transform light scattering. , 2013, Optics express.

[29]  M. Friebel,et al.  Model function to calculate the refractive index of native hemoglobin in the wavelength range of 250-1100 nm dependent on concentration. , 2006, Applied optics.

[30]  Francisco E. Robles,et al.  Nonlinear phase dispersion spectroscopy. , 2011, Optics letters.

[31]  YongKeun Park,et al.  Spectroscopic phase microscopy for quantifying hemoglobin concentrations in intact red blood cells , 2009, BiOS.

[32]  YoungJu Jo,et al.  Quantitative Phase Imaging Techniques for the Study of Cell Pathophysiology: From Principles to Applications , 2013, Sensors.

[33]  Teresa C. Chen,et al.  In vivo human retinal imaging by ultrahigh-speed spectral domain optical coherence tomography. , 2004, Optics letters.

[34]  YongKeun Park,et al.  Optical imaging techniques for the study of malaria. , 2012, Trends in biotechnology.

[35]  Subra Suresh,et al.  Biophysics of Malarial Parasite Exit from Infected Erythrocytes , 2011, PloS one.

[36]  M. Dunn,et al.  Detection and identification of intermediates in the reaction of L-serine with Escherichia coli tryptophan synthase via rapid-scanning ultraviolet-visible spectroscopy. , 1985, Biochemistry.

[37]  Michael S Feld,et al.  Imaging voltage-dependent cell motions with heterodyne Mach-Zehnder phase microscopy. , 2007, Optics letters.

[38]  R. Dasari,et al.  Diffraction phase microscopy for quantifying cell structure and dynamics. , 2006, Optics letters.

[39]  YongKeun Park,et al.  Fourier transform light scattering angular spectroscopy using digital inline holography. , 2012, Optics letters.

[40]  Gabriel Popescu,et al.  Diffraction phase and fluorescence microscopy. , 2006, Optics express.

[41]  Zhuo Wang,et al.  Fourier transform light scattering of inhomogeneous and dynamic structures. , 2008, Physical review letters.

[42]  Yongkeun Park,et al.  Refractive index maps and membrane dynamics of human red blood cells parasitized by Plasmodium falciparum , 2008, Proceedings of the National Academy of Sciences.

[43]  P. Brown,et al.  On the distribution of protein refractive index increments. , 2011, Biophysical journal.

[44]  K. Badizadegan,et al.  Live cell refractometry using microfluidic devices. , 2006, Optics letters.

[45]  R. Barer Determination of Dry Mass, Thickness, Solid and Water Concentration in Living Cells , 1953, Nature.

[46]  Francisco E. Robles,et al.  Assessing hemoglobin concentration using spectroscopic optical coherence tomography for feasibility of tissue diagnostics , 2010, Biomedical optics express.

[47]  YongKeun Park,et al.  High-resolution three-dimensional imaging of red blood cells parasitized by Plasmodium falciparum and in situ hemozoin crystals using optical diffraction tomography , 2013, Journal of biomedical optics.

[48]  Christian Depeursinge,et al.  Determination of Transmembrane Water Fluxes in Neurons Elicited by Glutamate Ionotropic Receptors and by the Cotransporters KCC2 and NKCC1: A Digital Holographic Microscopy Study , 2011, The Journal of Neuroscience.