Numerical multiscale solution strategy for fracturing heterogeneous materials
暂无分享,去创建一个
Chris J. Pearce | Nenad Bićanić | Łukasz Kaczmarczyk | Eduardo Alberto de Souza Neto | N. Bićanić | E. A. S. Neto | C. Pearce | Ł. Kaczmarczyk
[1] E. Kasparek. An efficient triangular plate element with C1‐continuity , 2008 .
[2] 小林 昭一. "MICROMECHANICS: Overall Properties of Heterogeneous Materials", S.Nemat-Nasser & M.Hori(著), (1993年, North-Holland発行, B5判, 687ページ, DFL.260.00) , 1995 .
[3] Damijan Markovic,et al. Complementary energy based FE modelling of coupled elasto-plastic and damage behavior for continuum microstructure computations , 2006 .
[4] William Gropp,et al. Modern Software Tools in Scientific Computing , 1994 .
[5] J. A. Freitas,et al. Formulation of elastostatic hybrid-Trefftz stress elements , 1998 .
[6] Chris J. Pearce,et al. A corotational hybrid-Trefftz stress formulation for modelling cohesive cracks , 2009 .
[7] Martinus Gertrudis Auntonius Tijssens. On the cohesive surface methodology for fracture of brittle heterogeneous solids : computational and material modeling : proefschrift , 2000 .
[8] N. Fleck,et al. FINITE ELEMENTS FOR MATERIALS WITH STRAIN GRADIENT EFFECTS , 1999 .
[9] A. Hillerborg,et al. Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements , 1976 .
[10] R. Toupin. Elastic materials with couple-stresses , 1962 .
[11] Giulio Alfano,et al. Solution strategies for the delamination analysis based on a combination of local‐control arc‐length and line searches , 2003 .
[12] Harm Askes,et al. Representative volume: Existence and size determination , 2007 .
[13] Ted Belytschko,et al. Multiscale aggregating discontinuities: A method for circumventing loss of material stability , 2008 .
[14] Chris J. Pearce,et al. Scale transition and enforcement of RVE boundary conditions in second‐order computational homogenization , 2008 .
[15] Mark F. Adams. A distributed memory unstructured gauss-seidel algorithm for multigrid smoothers , 2001, SC.
[16] Christian Miehe,et al. Computational homogenization analysis in finite elasticity: material and structural instabilities on the micro- and macro-scales of periodic composites and their interaction , 2002 .
[17] M. Ainsworth. Essential boundary conditions and multi-point constraints in finite element analysis , 2001 .
[18] R. Hill. The Elastic Behaviour of a Crystalline Aggregate , 1952 .
[19] William Gropp,et al. Efficient Management of Parallelism in Object-Oriented Numerical Software Libraries , 1997, SciTools.
[20] C. Miehe,et al. Computational micro-to-macro transitions of discretized microstructures undergoing small strains , 2002 .
[21] M. Vaško,et al. Trefftz-polynomial reciprocity based FE formulations , 2001 .
[22] Mgd Marc Geers,et al. ENHANCED SOLUTION CONTROL FOR PHYSICALLY AND GEOMETRICALLY NON-LINEAR PROBLEMS. PART I|THE SUBPLANE CONTROL APPROACH , 1999 .
[23] S. Nemat-Nasser,et al. Micromechanics: Overall Properties of Heterogeneous Materials , 1993 .
[24] M. V. Vliet. Size effect in Tensile Fracture of Concrete and Rock , 2000 .
[25] L. J. Sluys,et al. Coupled-volume multi-scale modelling of quasi-brittle material , 2008 .
[26] T. Belytschko,et al. Multiscale Equivalent Aggregating Discontinuities: Circumventing Loss of Ellipticity , 2008 .
[27] Joost C. Walraven,et al. Aggregate interlock: A theoretical and experimental analysis , 1980 .
[28] F. Feyel. A multilevel finite element method (FE2) to describe the response of highly non-linear structures using generalized continua , 2003 .
[29] Garth N. Wells,et al. Discontinuous modelling of strain localisation and failure , 2001 .
[30] C. Miehe,et al. On multiscale FE analyses of heterogeneous structures: from homogenization to multigrid solvers , 2007 .
[31] J. Z. Zhu,et al. The finite element method , 1977 .
[32] I. Gitman. Representative volumes and multi-scale modelling of quasi-brittle materials , 2006 .
[33] J. Michel,et al. Effective properties of composite materials with periodic microstructure : a computational approach , 1999 .
[34] V. Kouznetsova,et al. Multi‐scale constitutive modelling of heterogeneous materials with a gradient‐enhanced computational homogenization scheme , 2002 .
[35] Stefan Diebels,et al. A second‐order homogenization procedure for multi‐scale analysis based on micropolar kinematics , 2007 .
[36] Yousef Saad,et al. Iterative methods for sparse linear systems , 2003 .