Numerical multiscale solution strategy for fracturing heterogeneous materials

Abstract This paper presents a numerical multiscale modelling strategy for simulating fracturing in materials where the fine-scale heterogeneities are fully resolved, with a particular focus on concrete. The fine-scale is modelled using a hybrid-Trefftz stress formulation for modelling propagating cohesive cracks. The very large system of algebraic equations that emerges from detailed resolution of the fine-scale structure requires an efficient iterative solver with a preconditioner that is appropriate for fracturing heterogeneous materials. This paper proposes a two-grid strategy for construction of the preconditioner that utilizes scale transition techniques derived for computational homogenization and represents an adaptation of the work of Miehe and Bayreuther [2] and its extension to fracturing heterogeneous materials. For the coarse scale, this paper investigates both classical C 0 -continuous displacement-based finite elements as well as C 1 -continuous elements. The preconditioned GMRES Krylov iterative solver with dynamic convergence tolerance is integrated with a constrained Newton method with local arc-length control and line searches. The convergence properties and performance of the parallel implementation of the proposed solution strategy is illustrated on two numerical examples.

[1]  E. Kasparek An efficient triangular plate element with C1‐continuity , 2008 .

[2]  小林 昭一 "MICROMECHANICS: Overall Properties of Heterogeneous Materials", S.Nemat-Nasser & M.Hori(著), (1993年, North-Holland発行, B5判, 687ページ, DFL.260.00) , 1995 .

[3]  Damijan Markovic,et al.  Complementary energy based FE modelling of coupled elasto-plastic and damage behavior for continuum microstructure computations , 2006 .

[4]  William Gropp,et al.  Modern Software Tools in Scientific Computing , 1994 .

[5]  J. A. Freitas,et al.  Formulation of elastostatic hybrid-Trefftz stress elements , 1998 .

[6]  Chris J. Pearce,et al.  A corotational hybrid-Trefftz stress formulation for modelling cohesive cracks , 2009 .

[7]  Martinus Gertrudis Auntonius Tijssens On the cohesive surface methodology for fracture of brittle heterogeneous solids : computational and material modeling : proefschrift , 2000 .

[8]  N. Fleck,et al.  FINITE ELEMENTS FOR MATERIALS WITH STRAIN GRADIENT EFFECTS , 1999 .

[9]  A. Hillerborg,et al.  Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements , 1976 .

[10]  R. Toupin Elastic materials with couple-stresses , 1962 .

[11]  Giulio Alfano,et al.  Solution strategies for the delamination analysis based on a combination of local‐control arc‐length and line searches , 2003 .

[12]  Harm Askes,et al.  Representative volume: Existence and size determination , 2007 .

[13]  Ted Belytschko,et al.  Multiscale aggregating discontinuities: A method for circumventing loss of material stability , 2008 .

[14]  Chris J. Pearce,et al.  Scale transition and enforcement of RVE boundary conditions in second‐order computational homogenization , 2008 .

[15]  Mark F. Adams A distributed memory unstructured gauss-seidel algorithm for multigrid smoothers , 2001, SC.

[16]  Christian Miehe,et al.  Computational homogenization analysis in finite elasticity: material and structural instabilities on the micro- and macro-scales of periodic composites and their interaction , 2002 .

[17]  M. Ainsworth Essential boundary conditions and multi-point constraints in finite element analysis , 2001 .

[18]  R. Hill The Elastic Behaviour of a Crystalline Aggregate , 1952 .

[19]  William Gropp,et al.  Efficient Management of Parallelism in Object-Oriented Numerical Software Libraries , 1997, SciTools.

[20]  C. Miehe,et al.  Computational micro-to-macro transitions of discretized microstructures undergoing small strains , 2002 .

[21]  M. Vaško,et al.  Trefftz-polynomial reciprocity based FE formulations , 2001 .

[22]  Mgd Marc Geers,et al.  ENHANCED SOLUTION CONTROL FOR PHYSICALLY AND GEOMETRICALLY NON-LINEAR PROBLEMS. PART I|THE SUBPLANE CONTROL APPROACH , 1999 .

[23]  S. Nemat-Nasser,et al.  Micromechanics: Overall Properties of Heterogeneous Materials , 1993 .

[24]  M. V. Vliet Size effect in Tensile Fracture of Concrete and Rock , 2000 .

[25]  L. J. Sluys,et al.  Coupled-volume multi-scale modelling of quasi-brittle material , 2008 .

[26]  T. Belytschko,et al.  Multiscale Equivalent Aggregating Discontinuities: Circumventing Loss of Ellipticity , 2008 .

[27]  Joost C. Walraven,et al.  Aggregate interlock: A theoretical and experimental analysis , 1980 .

[28]  F. Feyel A multilevel finite element method (FE2) to describe the response of highly non-linear structures using generalized continua , 2003 .

[29]  Garth N. Wells,et al.  Discontinuous modelling of strain localisation and failure , 2001 .

[30]  C. Miehe,et al.  On multiscale FE analyses of heterogeneous structures: from homogenization to multigrid solvers , 2007 .

[31]  J. Z. Zhu,et al.  The finite element method , 1977 .

[32]  I. Gitman Representative volumes and multi-scale modelling of quasi-brittle materials , 2006 .

[33]  J. Michel,et al.  Effective properties of composite materials with periodic microstructure : a computational approach , 1999 .

[34]  V. Kouznetsova,et al.  Multi‐scale constitutive modelling of heterogeneous materials with a gradient‐enhanced computational homogenization scheme , 2002 .

[35]  Stefan Diebels,et al.  A second‐order homogenization procedure for multi‐scale analysis based on micropolar kinematics , 2007 .

[36]  Yousef Saad,et al.  Iterative methods for sparse linear systems , 2003 .