Preventing oscillatory behavior in error control for ODEs

The cause of erroneous oscillatory behavior when solving systems of ordinary differential equations with state-of-the-art software has been investigated. It is demonstrated that a common cause of this oscillatory behavior is the cyclic variation of the local truncation error and the step size when explicit integration algorithms with adaptive step size control are used. It is shown that non-stiff systems can also exhibit such a behavior and it can be detected by monitoring the relative errors in the derivative values during the integration. It is proposed to include the estimated error in the derivative values in the step size control algorithms in order to prevent the cyclic variation of the step size and the resultant oscillatory behavior.

[1]  Yung-Wei Chen,et al.  A chaos detectable and time step-size adaptive numerical scheme for nonlinear dynamical systems , 2007 .

[2]  David J. Goodman,et al.  Personal Communications , 1994, Mobile Communications.

[3]  Wayne H. Enright,et al.  The Design and Implementation of Usable ODE Software , 2002, Numerical Algorithms.

[4]  J. Dormand,et al.  A family of embedded Runge-Kutta formulae , 1980 .

[5]  L. Shampine Error estimation and control for ODEs , 2005 .

[6]  Lawrence F. Shampine,et al.  The MATLAB ODE Suite , 1997, SIAM J. Sci. Comput..

[7]  Howard F. Rase,et al.  Chemical Reactor Design for Process Plants , 1977 .

[8]  D. Do,et al.  Applied Mathematics and Modeling for Chemical Engineers , 1994 .

[9]  Neima Brauner,et al.  Prediction and Prevention of Chemical Reaction Hazards — Learning by Simulation , 2001 .

[10]  William H. Press,et al.  Book-Review - Numerical Recipes in Pascal - the Art of Scientific Computing , 1989 .

[11]  N. Brauner,et al.  Construction of a web–based library for testing the performance of numerical software for ODEs , 2005 .

[12]  Michael A. Malcolm,et al.  Computer methods for mathematical computations , 1977 .

[13]  John Ingham,et al.  Chemical Engineering Dynamics: Modelling with PC Stimulation , 2000 .

[14]  Neima Brauner,et al.  Application of feedback control principles for solving differential- algebraic systems of equations in process control education , 1996 .

[15]  William H. Press,et al.  Numerical recipes in C. The art of scientific computing , 1987 .

[16]  Erwin Fehlberg,et al.  Klassische Runge-Kutta-Formeln vierter und niedrigerer Ordnung mit Schrittweiten-Kontrolle und ihre Anwendung auf Wärmeleitungsprobleme , 1970, Computing.

[17]  F. Grund Forsythe, G. E. / Malcolm, M. A. / Moler, C. B., Computer Methods for Mathematical Computations. Englewood Cliffs, New Jersey 07632. Prentice Hall, Inc., 1977. XI, 259 S , 1979 .

[18]  Mordechai Shacham,et al.  Problem Solving in Chemical and Biochemical Engineering with POLYMATH, Excel, and MATLAB , 2007 .