Nearly optimal measurement schemes in a noisy Mach-Zehnder interferometer with coherent and squeezed vacuum

The use of an interferometer to perform an ultra-precise parameter estimation under noisy conditions is a challenging task. Here we discuss nearly optimal measurement schemes for a well known, sensitive input state, squeezed vacuum and coherent light. We find that a single mode intensity measurement, while the simplest and able to beat the shot-noise limit, is outperformed by other measurement schemes in the low-power regime. However, at high powers, intensity measurement is only outperformed by a small factor. Specifically, we confirm, that an optimal measurement choice under lossless conditions is the parity measurement. In addition, we also discuss the performance of several other common measurement schemes when considering photon loss, detector efficiency, phase drift, and thermal photon noise. We conclude that, with noise considerations, homodyne remains near optimal in both the low and high power regimes. Surprisingly, some of the remaining investigated measurement schemes, including the previous optimal parity measurement, do not remain even near optimal when noise is introduced.

[1]  Zach DeVito,et al.  Opt , 2017 .

[2]  M. Beck Introductory Quantum Optics , 2005 .

[3]  Jihane Mimih,et al.  The parity operator in quantum optical metrology , 2010, 1007.0586.

[4]  Holger F. Hofmann,et al.  High-photon-number path entanglement in the interference of spontaneously down-converted photon pairs with coherent laser light , 2007, 0705.0047.

[5]  Klauder,et al.  SU(2) and SU(1,1) interferometers. , 1986, Physical review. A, General physics.

[6]  K. Banaszek,et al.  Quantum phase estimation with lossy interferometers , 2009, 0904.0456.

[7]  Franco Nori,et al.  Enhanced interferometry using squeezed thermal states and even or odd states , 2014, 1405.2397.

[8]  S. Olivares,et al.  Gaussian States in Quantum Information , 2005 .

[9]  Kaushik P. Seshadreesan,et al.  Parity detection achieves the Heisenberg limit in interferometry with coherent mixed with squeezed vacuum light , 2011 .

[10]  Von Welch,et al.  Reproducing GW150914: The First Observation of Gravitational Waves From a Binary Black Hole Merger , 2016, Computing in Science & Engineering.

[11]  Christopher C. Gerry,et al.  Heisenberg-limit interferometry with four-wave mixers operating in a nonlinear regime , 2000 .

[12]  Animesh Datta,et al.  Quantum metrology with imperfect states and detectors , 2010, 1012.0539.

[13]  Augusto Smerzi,et al.  Mach-Zehnder interferometry at the Heisenberg limit with coherent and squeezed-vacuum light. , 2007, Physical review letters.

[14]  Hwang Lee,et al.  Bounds on quantum multiple-parameter estimation with Gaussian state , 2014, The European Physical Journal D.

[15]  Parity Detection in Quantum Optical Metrology Without Number Resolving Detectors , 2010, 1007.4176.

[16]  Thomas de Quincey [C] , 2000, The Works of Thomas De Quincey, Vol. 1: Writings, 1799–1820.

[17]  Brian J. Smith,et al.  Optimal quantum phase estimation. , 2008, Physical review letters.

[18]  Jonathan P. Dowling,et al.  A quantum Rosetta stone for interferometry , 2002, quant-ph/0202133.

[20]  Joshua R. Smith,et al.  LIGO: the Laser Interferometer Gravitational-Wave Observatory , 1992, Science.

[21]  Gerardo Adesso,et al.  Continuous Variable Quantum Information: Gaussian States and Beyond , 2014, Open Syst. Inf. Dyn..

[22]  Joshua R. Smith,et al.  LIGO: The laser interferometer gravitational-wave observatory , 2006, QELS 2006.

[23]  Harald Lück,et al.  The GEO600 project , 1997 .

[24]  L. Cohen,et al.  Super-resolved phase measurements at the shot noise limit by parity measurement. , 2014, Optics express.

[25]  Christopher C. Gerry,et al.  Optical interferometry at the Heisenberg limit with twin Fock states and parity measurements , 2003 .

[26]  Ryutaro Takahashi,et al.  Status of TAMA300 , 2004 .

[27]  Aravind Chiruvelli,et al.  Parity measurements in quantum optical metrology , 2009, 0901.4395.

[28]  Claudia Biermann,et al.  Mathematical Methods Of Statistics , 2016 .

[29]  Stefano Olivares,et al.  Optical phase estimation in the presence of phase diffusion. , 2010, Physical review letters.

[30]  S. Lloyd,et al.  Quantum-Enhanced Measurements: Beating the Standard Quantum Limit , 2004, Science.

[31]  Antonio-José Almeida,et al.  NAT , 2019, Springer Reference Medizin.

[32]  J. Kołodyński,et al.  Quantum limits in optical interferometry , 2014, 1405.7703.

[33]  C. Gerry,et al.  Quantum nondemolition measurement of parity and generation of parity eigenstates in optical fields , 2005 .

[34]  Matteo G. A. Paris,et al.  Gaussian state interferometry with passive and active elements , 2015, 1510.07716.

[35]  Konrad Banaszek,et al.  Fundamental quantum interferometry bound for the squeezed-light-enhanced gravitational wave detector GEO 600 , 2013, 1305.7268.

[36]  C. Caves Quantum Mechanical Noise in an Interferometer , 1981 .

[37]  I. Walmsley,et al.  Experimental quantum-enhanced estimation of a lossy phase shift , 2009, 0906.3511.

[38]  S. Braunstein,et al.  Statistical distance and the geometry of quantum states. , 1994, Physical review letters.

[39]  Tae-Woo Lee,et al.  Optimization of quantum interferometric metrological sensors in the presence of photon loss , 2009, 0908.3008.

[40]  Bernard F. Schutz,et al.  The GEO 600 gravitational wave detector , 2002 .

[41]  Holger F. Hofmann,et al.  Effects of photon losses on phase estimation near the Heisenberg limit using coherent light and squeezed vacuum , 2010 .

[42]  William J Munro,et al.  Quantum metrology with entangled coherent states. , 2011, Physical review letters.

[43]  Marcin Jarzyna,et al.  Quantum interferometry with and without an external phase reference , 2012 .

[44]  M. Loupias,et al.  The Virgo status , 2006 .