Controlling the Plasma Flow in the Miniaturized Cylindrical Hall Thruster

A substantial narrowing of the plume of the cylindrical Hall thruster (CHT) was observed upon the enhancement of the electron emission from the hollow-cathode discharge, which implies the possibility for the thruster efficiency increase due to the ion-beam focusing. It is demonstrated that the miniaturized CHT can be operated in the non-self-sustained regime, with the discharge current being controlled by the cathode electron emission. The thruster operation in this mode greatly expands the range of the plasma and discharge parameters normally accessible for the CHT. The observed variation of the plasma potential, electron temperature, and plasma density with the cathode current in the non-self-sustained regime points to the fact that the cathode discharge can affect the electron cross-field transport in the CHT plasma.

[1]  L. Garrigues,et al.  Low frequency oscillations in a stationary plasma thruster , 1998 .

[2]  H. Tahara,et al.  Operational characteristics and plasma measurements in cylindrical Hall thrusters , 2007 .

[3]  Artem Smirnov,et al.  Enhanced ionization in the cylindrical Hall thruster , 2002 .

[4]  Andrew D. Ketsdever,et al.  Fifty-Watt Hall Thruster for Microsatellites , 2000 .

[5]  Dan M. Goebel,et al.  Potential Fluctuations and Energetic Ion Production in Hollow Cathode Discharges , 2007 .

[6]  Lyon B. King,et al.  Effect of Cathode Position on Hall-Effect Thruster Performance and Cathode Coupling Voltage , 2007 .

[7]  Roger M. Myers,et al.  Hall thruster-cathode coupling , 1999 .

[8]  Kurt A. Polzin,et al.  Performance of a Low-Power Cylindrical Hall Thruster , 2007 .

[9]  N. Fisch,et al.  Parametric investigations of a nonconventional Hall thruster , 2001 .

[10]  John D. Williams,et al.  Electron emission from a hollow cathode-based plasma contactor , 1992 .

[11]  James E. Pollard,et al.  Spectral Characteristics of Radiated Emission from SPT-100 Hall Thrusters , 2005 .

[12]  N. Fisch,et al.  Control of the electric-field profile in the Hall thruster , 2001 .

[13]  N. Fisch,et al.  Plasma measurements in a 100 W cylindrical Hall thruster , 2004 .

[14]  Daniel G. Courtney,et al.  Diverging Cusped-Field Hall Thruster ( DCHT ) IEPC-2007-39 , 2007 .

[15]  A model for mercury orificed hollow cathodes - Theory and experiment , 1982 .

[16]  A. Fruchtman,et al.  Plasma lens and plume divergence in the Hall thruster , 2006 .

[17]  I. Mikellides,et al.  Hollow cathode theory and experiment. II. A two-dimensional theoretical model of the emitter region , 2005 .

[18]  N. Fisch,et al.  Experimental and theoretical studies of cylindrical Hall thrustersa) , 2006 .

[19]  N. Fisch,et al.  Enhanced performance of cylindrical Hall thrusters , 2007 .

[20]  Yevgeny Raitses,et al.  Plume reduction in segmented electrode Hall thruster , 2000 .

[21]  Yevgeny Raitses,et al.  Parametric investigation of miniaturized cylindrical and annular Hall thrusters , 2001 .

[22]  K. Makowski,et al.  Transit-time instability in Hall thrusters , 2005 .

[23]  Yevgeny Raitses,et al.  Variable operation of Hall thruster with multiple segmented electrodes , 2000 .

[24]  P. Turchi,et al.  A first-principles model for orificed hollow cathode operation , 1992 .

[25]  N. Fisch,et al.  Variational Principle for Optimal Accelerated Neutralized Flow , 2000 .

[26]  N. Fisch,et al.  Electron cross-field transport in a miniaturized cylindrical Hall thruster , 2005, IEEE Transactions on Plasma Science.