Multiscale modeling and mathematical problems related to tumor evolution and medical therapy.

This paper provides a survey of mathematical models and methods dealing with the analysis and simulation of tumor dynamics in competition with the immune system. The characteristic scales of the phenomena are identified and the mathematical literature on models and problems developed on each scale is reviewed and critically analyzed. Moreover, this paper deals with the modeling and optimization of therapeutical actions. The aim of the critical analysis and review consists in providing the background framework towards the development of research perspectives in this promising new field of applied mathematics.

[1]  John R. King,et al.  Mathematical Modelling of the Effects of Mitotic Inhibitors on Avascular Tumour Growth , 1999 .

[2]  Angus G. Dalgleish,et al.  Adjuvants and the promotion of Th1-type cytokines in tumour immunotherapy , 2002, Cancer Immunology, Immunotherapy.

[3]  Helen M. Byrne,et al.  Modelling the interactions between tumour cells and a blood vessel in a microenvironment within a vascular tumour , 2001, European Journal of Applied Mathematics.

[4]  Nicola Bellomo,et al.  Dynamics of tumor interaction with the host immune system , 1994 .

[5]  N. Bellomo,et al.  From a class of kinetic models to the macroscopic equations for multicellular systems in biology , 2003 .

[6]  M. Chaplain,et al.  Modelling the role of cell-cell adhesion in the growth and development of carcinomas , 1996 .

[7]  A. Logan,et al.  Angiogenesis , 1993, The Lancet.

[8]  R K Jain,et al.  Delivery of Molecular Medicine to Solid Tumors , 1996, Science.

[9]  Mark A. J. Chaplain Special Issue on “Mathematical Modelling and Simulation of Aspects of Cancer Growth” , 2002 .

[10]  Hans G. Othmer,et al.  The Diffusion Limit of Transport Equations Derived from Velocity-Jump Processes , 2000, SIAM J. Appl. Math..

[11]  L. Taber Biomechanics of Growth, Remodeling, and Morphogenesis , 1995 .

[12]  Trachette L. Jackson,et al.  Vascular tumor growth and treatment: Consequences of polyclonality, competition and dynamic vascular support , 2002, Journal of mathematical biology.

[13]  Antonio Fasano,et al.  Cell kinetics in tumour cords studied by a model with variable cell cycle length. , 2002, Mathematical biosciences.

[14]  A. McCulloch,et al.  Stress-dependent finite growth in soft elastic tissues. , 1994, Journal of biomechanics.

[15]  Federico Bussolino,et al.  Biological Aspects of Tumour Angiogenesis , 2003 .

[16]  J R King,et al.  Interactions between a uniformly proliferating tumour and its surroundings: uniform material properties. , 2003, Mathematical medicine and biology : a journal of the IMA.

[17]  M E Gurtin,et al.  On interacting populations that disperse to avoid crowding: preservation of segregation , 1985, Journal of mathematical biology.

[18]  P. Maini,et al.  Mathematical oncology: Cancer summed up , 2003, Nature.

[19]  R K Jain,et al.  Transport of molecules in the tumor interstitium: a review. , 1987, Cancer research.

[20]  M. Chaplain,et al.  Two-dimensional models of tumour angiogenesis and anti-angiogenesis strategies. , 1997, IMA journal of mathematics applied in medicine and biology.

[21]  T. Hillen HYPERBOLIC MODELS FOR CHEMOSENSITIVE MOVEMENT , 2002 .

[22]  Helen M. Byrne,et al.  A two-phase model of solid tumour growth , 2003, Appl. Math. Lett..

[23]  L. Preziosi,et al.  On Darcy's law for growing porous media , 2002 .

[24]  Nicola Bellomo,et al.  MATHEMATICAL TOPICS ON THE MODELLING COMPLEX MULTICELLULAR SYSTEMS AND TUMOR IMMUNE CELLS COMPETITION , 2004 .

[25]  Antonio Fasano,et al.  Regression and regrowth of tumour cords following single-dose anticancer treatment , 2003, Bulletin of mathematical biology.

[26]  Luisa Arlotti,et al.  A Kinetic Model of Tumor/Immune System Cellular Interactions , 2002 .

[27]  B. Sleeman,et al.  Mathematical modeling of capillary formation and development in tumor angiogenesis: Penetration into the stroma , 2001, Bulletin of mathematical biology.

[28]  Mirosław Lachowicz,et al.  FROM MICROSCOPIC TO MACROSCOPIC DESCRIPTION FOR GENERALIZED KINETIC MODELS , 2002 .

[29]  R K Jain,et al.  Barriers to drug delivery in solid tumors. , 1994, Scientific American.

[30]  Nicola Bellomo,et al.  BIFURCATION ANALYSIS FOR A NONLINEAR SYSTEM OF INTEGRO-DIFFERENTIAL EQUATIONS MODELLING TUMOR-IMMUNE CELLS COMPETITION , 1999 .

[31]  L. Preziosi,et al.  Modelling Solid Tumor Growth Using the Theory of Mixtures , 2001, Mathematical medicine and biology : a journal of the IMA.

[32]  R F Kallman,et al.  Effect of cytochalasin B, nocodazole and irradiation on migration and internalization of cells and microspheres in tumor cell spheroids. , 1986, Experimental cell research.

[33]  Jay D. Humphrey,et al.  A CONSTRAINED MIXTURE MODEL FOR GROWTH AND REMODELING OF SOFT TISSUES , 2002 .

[34]  J. Behrens,et al.  The Wnt signaling pathway and its role in tumor development , 2003, Journal of Cancer Research and Clinical Oncology.

[35]  John A. Adam,et al.  General Aspects of Modeling Tumor Growth and Immune Response , 1997 .

[36]  H. I. Freedman,et al.  A mathematical model of cancer treatment by immunotherapy. , 2000, Mathematical biosciences.

[37]  M. Chaplain,et al.  Mathematical Modelling of Tissue Invasion , 2003 .

[38]  Nicola Bellomo,et al.  The modelling of the immune competition by generalized kinetic (Boltzmann) models: Review and research perspectives , 2003 .

[39]  Piero Musiani,et al.  Combined Allogeneic Tumor Cell Vaccination and Systemic Interleukin 12 Prevents Mammary Carcinogenesis in HER-2/neu Transgenic Mice , 2001, The Journal of experimental medicine.

[40]  R. Kalluri Basement membranes: structure, assembly and role in tumour angiogenesis , 2003, Nature reviews. Cancer.

[41]  J. King,et al.  Mathematical modelling of avascular-tumour growth. , 1997, IMA journal of mathematics applied in medicine and biology.

[42]  R. Skalak,et al.  Time-dependent behavior of interstitial fluid pressure in solid tumors: implications for drug delivery. , 1995, Cancer research.

[43]  R. Jain,et al.  Role of extracellular matrix assembly in interstitial transport in solid tumors. , 2000, Cancer research.

[44]  D Ambrosi,et al.  The role of stress in the growth of a multicell spheroid , 2004, Journal of mathematical biology.

[45]  Helen M Byrne,et al.  A multiphase model describing vascular tumour growth , 2003, Bulletin of mathematical biology.

[46]  Nicola Bellomo,et al.  Generalized kinetic (Boltzmann) models: mathematical structures and applications , 2002 .

[47]  Paolo A. Netti,et al.  Solid stress inhibits the growth of multicellular tumor spheroids , 1997, Nature Biotechnology.

[48]  Rakesh K. Jain,et al.  Transport of molecules across tumor vasculature , 2004, Cancer and Metastasis Reviews.

[49]  Rakesh K Jain,et al.  Molecular regulation of vessel maturation , 2003, Nature Medicine.

[50]  Carlo Cercignani Ludwig Boltzmann. The Man Who Trusted Atoms , 1999 .

[51]  M. Chaplain,et al.  Free boundary value problems associated with the growth and development of multicellular spheroids , 1997, European Journal of Applied Mathematics.

[52]  J A Sherratt,et al.  Modelling the macrophage invasion of tumours: effects on growth and composition. , 1998, IMA journal of mathematics applied in medicine and biology.

[53]  Luigi Preziosi,et al.  Deformable Porous Media and Composites Manufacturing , 2000 .

[54]  J. Folkman,et al.  Clinical translation of angiogenesis inhibitors , 2002, Nature Reviews Cancer.

[55]  Helen Byrne,et al.  Modelling Avascular Tumour Growth , 2003 .

[56]  D. Ambrosi,et al.  On the mechanics of a growing tumor , 2002 .

[57]  Graeme J. Pettet,et al.  AVASCULAR TUMOUR DYNAMICS AND NECROSIS , 1999 .

[58]  B. Sleeman,et al.  Mathematical modeling of capillary formation and development in tumor angiogenesis: Penetration into the stroma , 2001 .

[59]  L D Greller,et al.  Tumor heterogeneity and progression: conceptual foundations for modeling. , 1996, Invasion & metastasis.

[60]  Morton E. Gurtin,et al.  On the diffusion of biological populations , 1977 .

[61]  H. Byrne,et al.  The role of cell-cell interactions in a two-phase model for avascular tumour growth , 2002, Journal of mathematical biology.

[62]  Nicola Bellomo,et al.  Generalized Kinetic Models in Applied Sciences: Lecture Notes on Mathematical Problem , 2003 .

[63]  J. Hopfield,et al.  From molecular to modular cell biology , 1999, Nature.

[64]  Robert A. Gatenby,et al.  Mathematical oncology: Cancer summed up [Concepts article] , 2003 .

[65]  E. Angelis,et al.  Mathematical models of therapeutical actions related to tumour and immune system competition , 2005 .

[66]  Paolo A. Netti,et al.  Interstitial Transport in Solid Tumours , 2003 .

[67]  Mark A. J. Chaplain,et al.  An explicit subparametric spectral element method of lines applied to a tumour angiogenesis system o , 2004 .

[68]  M J Plank,et al.  A reinforced random walk model of tumour angiogenesis and anti-angiogenic strategies. , 2003, Mathematical medicine and biology : a journal of the IMA.

[69]  M. Kolev Mathematical modelling of the competition between tumors and immune system considering the role of the antibodies , 2003 .

[70]  R. Skalak,et al.  Macro- and Microscopic Fluid Transport in Living Tissues: Application to Solid Tumors , 1997 .

[71]  H M Byrne,et al.  A mathematical model to study the effects of drug resistance and vasculature on the response of solid tumors to chemotherapy. , 2000, Mathematical biosciences.

[72]  L. Preziosi,et al.  ON THE CLOSURE OF MASS BALANCE MODELS FOR TUMOR GROWTH , 2002 .

[73]  Mark A. J. Chaplain,et al.  COMPUTING HIGHLY ACCURATE SOLUTIONS OF A TUMOUR ANGIOGENESIS MODEL , 2003 .

[74]  Antonio DiCarlo,et al.  Growth and balance , 2002 .

[75]  Davide Carlo Ambrosi,et al.  Mechanical models in tumour growth , 2003 .

[76]  Addolorata Marasco,et al.  Bifurcation analysis for a mean field modelling of tumor and immune system competition , 2003 .

[77]  P. Delves,et al.  The Immune System , 2000 .

[78]  Markus R. Owen,et al.  MATHEMATICAL MODELLING OF MACROPHAGE DYNAMICS IN TUMOURS , 1999 .

[79]  P. Hahnfeldt,et al.  Tumor development under angiogenic signaling: a dynamical theory of tumor growth, treatment response, and postvascular dormancy. , 1999, Cancer research.

[80]  Nicola Bellomo,et al.  Generalized Kinetic Models , 2000 .

[81]  Nicola Bellomo,et al.  Modeling and Simulation of Tumor Development, Treatment, and Control , 2003 .

[82]  Kumbakonam R. Rajagopal,et al.  Mechanics of Mixtures , 1995 .

[83]  A. Bertuzzi,et al.  Cell kinetics in a tumour cord. , 2000, Journal of theoretical biology.

[84]  Paolo A. Netti,et al.  Role of Extracellular Matrix Assembly in Interstitial Transport in Solid Tumors 1 , 2000 .

[85]  E. Angelis,et al.  Qualitative analysis of a mean field model of tumor-immune system competition , 2003 .

[86]  A. Bellouquid,et al.  Kinetic (cellular) models of cell progression and competition with the immune system , 2004 .

[87]  Levon M Khachigian,et al.  Transcription factor Egr-1 supports FGF-dependent angiogenesis during neovascularization and tumor growth , 2003, Nature Medicine.

[88]  Magnus Willander,et al.  The generalized kinetic modelling of a multicomponent “real-life” fluid by means of a single distribution function , 2003 .

[89]  G J Pettet,et al.  Cell migration in multicell spheroids: swimming against the tide. , 1993, Bulletin of mathematical biology.

[90]  R K Jain,et al.  Microvascular pressure is the principal driving force for interstitial hypertension in solid tumors: implications for vascular collapse. , 1992, Cancer research.

[91]  Luigi Preziosi,et al.  Multiphase Models of Tumor Growth: General Framework and Particular Cases , 2003 .

[92]  J. King,et al.  Mathematical modelling of avascular-tumour growth. II: Modelling growth saturation. , 1999, IMA journal of mathematics applied in medicine and biology.

[93]  David Ruelle,et al.  Ludwig Boltzmann. The Man Who Trusted Atoms , 1998 .

[94]  Nicola Bellomo,et al.  Strategies of applied mathematics towards an immuno-mathematical theory on tumors and immune system interactions , 1998 .

[95]  Guido Forni,et al.  Antitumor vaccines: is it possible to prevent a tumor? , 2002, Cancer Immunology, Immunotherapy.

[96]  Luigi Preziosi,et al.  Cancer Modelling and Simulation , 2003 .

[97]  R F Kallman,et al.  Migration and internalization of cells and polystyrene microsphere in tumor cell spheroids. , 1982, Experimental cell research.

[98]  C. Please,et al.  Tumour dynamics and necrosis: surface tension and stability. , 2001, IMA journal of mathematics applied in medicine and biology.

[99]  J. King,et al.  Mathematical modelling of drug transport in tumour multicell spheroids and monolayer cultures. , 2003, Mathematical biosciences.

[100]  L. Preziosi,et al.  ADVECTION-DIFFUSION MODELS FOR SOLID TUMOUR EVOLUTION IN VIVO AND RELATED FREE BOUNDARY PROBLEM , 2000 .