ARCONS: A 2024 Pixel Optical through Near-IR Cryogenic Imaging Spectrophotometer

We present the design, construction, and commissioning results of ARCONS, the Array Camera for Optical to Near-IR Spectrophotometry. ARCONS is the first ground-based instrument in the optical through near-IR wavelength range based on microwave kinetic inductance detectors (MKIDs). MKIDs are revolutionary cryogenic detectors, capable of detecting single photons and measuring their energy without filters or gratings, similar to an X-ray microcalorimeter. MKIDs are nearly ideal, noiseless photon detectors, as they do not suffer from read noise or dark current and have nearly perfect cosmic ray rejection. ARCONS is an integral field spectrograph (IFS) containing a lens-coupled 2024 pixel MKID array yielding a 20'' × 20'' field of view and has been deployed on the Palomar 200 inch and Lick 120 inch telescopes for 24 nights of observing. We present initial results showing that ARCONS and its MKID arrays are now a fully operational and powerful tool for astronomical observations.

[1]  Donald W. Sweeney,et al.  LSST Science Book, Version 2.0 , 2009, 0912.0201.

[2]  Anthony J. Peacock,et al.  Resolution limitation due to phonon losses in superconducting tunnel junctions , 2006 .

[3]  Adrian T. Lee,et al.  The 10 Meter South Pole Telescope , 2009, 0907.4445.

[4]  Jonas Zmuidzinas,et al.  Two-level system noise reduction for Microwave Kinetic Inductance Detectors , 2009, 0909.2060.

[5]  G. Hilton,et al.  X‐ray detection using a superconducting transition‐edge sensor microcalorimeter with electrothermal feedback , 1996 .

[6]  J. J. A. Baselmans,et al.  Photon noise limited radiation detection with lens-antenna coupled microwave kinetic inductance detectors , 2011, 1107.4330.

[7]  Lorenzo Moncelsi,et al.  Characterising the SCUBA-2 superconducting bolometer arrays , 2010, Astronomical Telescopes + Instrumentation.

[8]  Edward J. Wollack,et al.  A Kilopixel Array of TES Bolometers for ACT: Development, Testing, and First Light , 2008 .

[9]  R. Manchester,et al.  TEMPO2, a new pulsar-timing package - I. An overview , 2006, astro-ph/0603381.

[10]  Shannon M. Duff,et al.  Proximity-coupled Ti/TiN multilayers for use in kinetic inductance detectors , 2012, 1209.4853.

[11]  Dan Werthimer,et al.  A readout for large arrays of microwave kinetic inductance detectors. , 2012, The Review of scientific instruments.

[12]  H. Leduc,et al.  A broadband superconducting detector suitable for use in large arrays , 2003, Nature.

[13]  John M. Martinis,et al.  Phase-resolved Crab Studies with a Cryogenic Transition-Edge Sensor Spectrophotometer , 2001, astro-ph/0108240.

[14]  Jonas Zmuidzinas,et al.  Titanium Nitride Films for Ultrasensitive Microresonator Detectors , 2010, 1003.5584.

[15]  Anthony J. Peacock,et al.  Electron energy down-conversion in thin superconducting films , 2007 .

[16]  Johan Kosmalski,et al.  Multiplexing 32,000 spectra onto 8 detectors: the HARMONI field splitting, image slicing, and wavelength selecting optics , 2012, Other Conferences.

[17]  John M. Martinis,et al.  A semiempirical model for two-level system noise in superconducting microresonators , 2008 .

[18]  Peter Verhoeve,et al.  Direct Position Resolution Measurement with DROIDs at Optical Wavelengths , 2008 .

[19]  P. Mauskopf,et al.  Lumped Element Kinetic Inductance Detectors , 2008 .

[20]  George E. Smith The invention and early history of the CCD , 2011 .

[21]  J. Bardin,et al.  Matched wideband low-noise amplifiers for radio astronomy. , 2009, The Review of scientific instruments.

[22]  Kenneth Patton,et al.  Status of the Dark Energy Survey Camera (DECam) project , 2010, Other Conferences.

[23]  H. Leduc,et al.  A wideband, low-noise superconducting amplifier with high dynamic range , 2012, Nature Physics.

[24]  Bruce Bumble,et al.  A superconducting focal plane array for ultraviolet, optical, and near-infrared astrophysics. , 2012, Optics express.

[25]  Jonas Zmuidzinas,et al.  Experimental evidence for a surface distribution of two-level systems in superconducting lithographed microwave resonators , 2008, 0802.4457.

[26]  Kent D. Irwin,et al.  Digital readouts for large microwave low-temperature detector arrays , 2006 .

[27]  Jiansong Gao,et al.  The physics of superconducting microwave resonators , 2008 .

[28]  José Salgado,et al.  Nuclear Instruments and Methods , 2003 .

[29]  Danica Marsden,et al.  Optical lumped element microwave kinetic inductance detectors , 2012, Other Conferences.

[30]  Stephan Friedrich,et al.  A superconducting tunnel junction x-ray detector with performance limited by statistical effects , 1998 .

[31]  Arlo U. Landolt,et al.  UBVRI Photometric Standard Stars in the Magnitude Range 11 , 1992 .

[32]  Sae Woo Nam,et al.  Transition-edge sensor arrays for UV-optical-IR astrophysics , 2006 .

[33]  Markus Loose,et al.  Performance of the first HAWAII 4RG-15 arrays in the laboratory and at the telescope , 2012, Other Conferences.

[34]  D. T. Vo,et al.  14-pixel, multiplexed array of gamma-ray microcalorimeters with 47 eV energy resolution at 103 keV , 2007 .

[35]  J. J. A. Baselmans,et al.  NIKA: A millimeter-wave kinetic inductance camera , 2010, 1004.2209.

[36]  L. Frunzio,et al.  Improved energy resolution of x-ray single photon imaging spectrometers using superconducting tunnel junctions , 2001 .

[37]  U. Fano Ionization Yield of Radiations. II. The Fluctuations of the Number of Ions , 1947 .

[38]  Jörn Beyer,et al.  Code-division SQUID multiplexing , 2010 .

[39]  Jason Glenn,et al.  The status of MUSIC: the multiwavelength sub-millimeter inductance camera , 2014, Astronomical Telescopes and Instrumentation.

[40]  E. Standish,et al.  Astronomical Refraction: Computational Method for All Zenith Angles , 2000 .

[41]  Jason Glenn,et al.  MKID multicolor array status and results from DemoCam , 2010, Astronomical Telescopes + Instrumentation.

[42]  D. Mattis,et al.  Theory of the anomalous skin effect in normal and superconducting metals , 1958 .