Calculation of ionization potentials and electron affinities for molecules relevant for streamer initiation and propagation

We investigate different quantum chemical methods to compute ionization potentials and electron affinities for various molecules of interest to streamer propagation experiments in liquids. Solvation effects have been studied for the ionization potential using a polarizable continuum model. The ionization potentials can be reasonably well predicted by the methods used, but electron affinities are more problematic. We discuss possible reasons for these problems. Our primary interest in exploiting these calculations is to aid the understanding of discharges in liquids, and to help predict the utility of various additives for insulating liquids.

[1]  L. Lundgaard,et al.  Effects of electron-attaching and electron-releasing additives on streamers in liquid cyclohexane , 2009, IEEE Transactions on Dielectrics and Electrical Insulation.

[2]  C. Cramer,et al.  Self-Consistent Reaction Field Model for Aqueous and Nonaqueous Solutions Based on Accurate Polarized Partial Charges. , 2007, Journal of chemical theory and computation.

[3]  L. Lundgaard,et al.  Effects of additives on prebreakdown phenomena in liquid cyclohexane: II. Streamer propagation , 2007 .

[4]  H. Chermette,et al.  Calculation of ionization potentials of small molecules: a comparative study of different methods. , 2005, The journal of physical chemistry. A.

[5]  M. Deleuze Valence One-Electron and Shake-Up Ionization Bands of Polycyclic Aromatic Hydrocarbons. III. Coronene, 1.2,6.7-Dibenzopyrene, 1.12-Benzoperylene, Anthanthrene , 2004 .

[6]  Hui Li,et al.  Improving the efficiency and convergence of geometry optimization with the polarizable continuum model: New energy gradients and molecular surface tessellation , 2004, J. Comput. Chem..

[7]  Patrice Pavis Generation , 2004 .

[8]  Jeffrey A. Nichols,et al.  Ionization Potential, Electron Affinity, Electronegativity, Hardness, and Electron Excitation Energy: Molecular Properties from Density Functional Theory Orbital Energies , 2003 .

[9]  G. Gallup,et al.  Dissociative electron attachment near threshold, thermal attachment rates, and vertical attachment energies of chloroalkanes , 2003 .

[10]  Giovanni Scalmani,et al.  New developments in the polarizable continuum model for quantum mechanical and classical calculations on molecules in solution , 2002 .

[11]  M. Deleuze Valence one-electron and shake-up ionization bands of polycyclic aromatic hydrocarbons. II. Azulene, phenanthrene, pyrene, chrysene, triphenylene, and perylene , 2002 .

[12]  O. Lesaint,et al.  Study of streamer inception in cyclohexane with a sensitive charge measurement technique under impulse voltage , 2001 .

[13]  M. Venuti,et al.  Temporary π* and σ* Anions and Dissociative Electron Attachment in Chlorobenzene and Related Molecules , 2001 .

[14]  Y. Sakai,et al.  The Effect of Molecular Structure on Prebreakdown Phenomena in Dielectric Liquids under Nonuniform Field , 2001 .

[15]  K. Aflatooni,et al.  Total cross sections for dissociative electron attachment in dichloroalkanes and selected polychloroalkanes: The correlation with vertical attachment energies , 2000 .

[16]  O. Lesaint,et al.  On the relationship between streamer branching and propagation in liquids: influence of pyrene in cyclohexane , 2000 .

[17]  N. Quirke,et al.  The Calculation of the Electron Affinity of Atoms and Molecules , 1999 .

[18]  D. Chong,et al.  Density-functional calculations of molecular electron affinities , 1999 .

[19]  Krishnan Raghavachari,et al.  Assessment of Gaussian-2 and density functional theories for the computation of ionization potentials and electron affinities , 1998 .

[20]  H. Yamashita,et al.  The effect of tip curvature on the prebreakdown streamer structure in cyclohexane , 1998 .

[21]  K. Kist,et al.  Propagation and structure of streamers in liquid dielectrics , 1998 .

[22]  Jacopo Tomasi,et al.  A new definition of cavities for the computation of solvation free energies by the polarizable continuum model , 1997 .

[23]  N. Bonifaci,et al.  Spectral analysis of the light emitted by streamers in hydrocarbon liquids , 1996, ICDL'96. 12th International Conference on Conduction and Breakdown in Dielectric Liquids.

[24]  Charles W. Bauschlicher,et al.  A comparison of the accuracy of different functionals , 1995 .

[25]  Massimo Pompili,et al.  The effect of the electrode gap on breakdown in liquid dielectrics , 1994 .

[26]  Yoshitaka Nakao,et al.  Effects of additives on prebreakdown phenomena in n-hexane , 1993, Proceedings of 1993 IEEE 11th International Conference on Conduction and Breakdown in Dielectric Liquids (ICDL '93).

[27]  E. Forster,et al.  Streamer formation in perfluoropolyether under impulse conditions , 1993 .

[28]  A. Becke Density-functional thermochemistry. III. The role of exact exchange , 1993 .

[29]  W. Schmidt Charge carrier energetics and dynamics in nonpolar liquids , 1993 .

[30]  W. Goddard,et al.  UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations , 1992 .

[31]  Michael J. Frisch,et al.  The performance of the Becke-Lee-Yang-Parr (B-LYP) density functional theory with various basis sets , 1992 .

[32]  C. Mazzetti,et al.  The effect of molecular structure on the properties of dielectric fluids , 1991 .

[33]  M. Karplus,et al.  A combined quantum mechanical and molecular mechanical potential for molecular dynamics simulations , 1990 .

[34]  O. Lesaint,et al.  Generation, growth, and collapse of vapor bubbles in hydrocarbon liquids under a high divergent electric field , 1989 .

[35]  J. V. Ortiz Electron binding energies of anionic alkali metal atoms from partial fourth order electron propagator theory calculations , 1988 .

[36]  A. Beroual,et al.  Prebreakdown Phenomena in Liquid Dielectrics , 1986, IEEE Transactions on Electrical Insulation.

[37]  W. G. Chadband,et al.  Experimental Support for a Model of Positive Streamer Propagation in Liquid Insulation , 1985, IEEE Transactions on Electrical Insulation.

[38]  J. Preses,et al.  Photoconductivity induced by single-photon excitation of aromatic molecules in liquid hydrocarbons , 1984 .

[39]  K. Jordan,et al.  Temporary negative ions in the chloromethanes CHCl2F and CCl2F2: Characterization of the σ* orbitals , 1982 .

[40]  E. O. Forster,et al.  Observation of Prebreakdown and Breakdown Phenomena in Liquid Hydrocarbons II. Non-Uniform Field Conditions , 1982, IEEE Transactions on Electrical Insulation.

[41]  J. Casanovas,et al.  Photoconductivity studies in some nonpolar liquids , 1981 .

[42]  J. C. Devins,et al.  Breakdown and prebreakdown phenomena in liquids , 1981 .

[43]  W. Kaim,et al.  Radikalionen, XXIII: R2P‐ und R2N‐substituierte Benzole: Die Ladungsverteilung in ihren Kationen, Anionen und Trianionen , 1978 .

[44]  L. Christophorou,et al.  Fragmentation of aliphatic chlorocarbons under low‐energy (≲10 eV) electron impact , 1977 .

[45]  E. D. Cyan Handbook of Chemistry and Physics , 1970 .

[46]  L. Angerer,et al.  Effect of organic additives on electrical breakdown in transformer oil and liquid paraffin , 1965 .

[47]  Toshio Nakayama,et al.  Ionization Potentials of Some Molecules , 1957 .

[48]  L. Lundgaard,et al.  Effects of additives on prebreakdown phenomena in liquid cyclohexane: I. Streamer initiation , 2007 .

[49]  R. Strömberg,et al.  NUCLEOSIDES, NUCLEOTIDES & NUCLEIC ACIDS, 20(4–7), 1381–1384 (2001) EVALUATION OF SEVERAL ECONOMICAL COMPUTATIONAL METHODS FOR GEOMETRY OPTIMISATION OF PHOSPHORUS ACID DERIVATIVES , 2003 .

[50]  A. Becke Density-functional thermochemistry. , 1996 .

[51]  O. Madelung,et al.  Static Dielectric Constants of Pure Liquids and Binary Liquid Mixtures , 1991 .

[52]  田畑 米穂,et al.  CRC handbook of radiation chemistry , 1991 .

[53]  L. Christophorou,et al.  Laser multiphoton ionization of aromatic molecules in nonpolar liquids , 1988 .

[54]  L. Christophorou,et al.  in Electron - Molecule Interactions and their Applications , 1984 .

[55]  B. Buckley The Theory of Electron-Molecule Collisions , 1980 .

[56]  R. C. Weast CRC Handbook of Chemistry and Physics , 1973 .