Dependence of galaxy quenching on halo mass and distance from its centre

We study the dependence of star-formation quenching on galaxy mass and environment, in the SDSS (z~0.1) and the AEGIS (z~1). It is crucial that we define quenching by low star-formation rate rather than by red colour, given that one third of the red galaxies are star forming. We address stellar mass M*, halo mass Mh, density over the nearest N neighbours deltaN, and distance to the halo centre D. The fraction of quenched galaxies appears more strongly correlated with Mh at fixed M* than with M* at fixed Mh, while for satellites quenching also depends on D. We present the M*-Mh relation for centrals at z~1. At z~1, the dependence of quenching on M* at fixed Mh is somewhat more pronounced than at z~0, but the quenched fraction is low (10%) and the haloes are less massive. For satellites, M*-dependent quenching is noticeable at high D, suggesting a quenching dependence on sub-halo mass for recently captured satellites. At small D, where satellites likely fell in more than a few Gyr ago, quenching strongly depends on Mh, and not on M*. The Mh-dependence of quenching is consistent with theoretical wisdom where virial shock heating in massive haloes shuts down accretion and triggers ram-pressure stripping, causing quenching. The interpretation of deltaN is complicated by the fact that it depends on the number of observed group members compared to N, motivating the use of D as a better measure of local environment.

[1]  J. Newman,et al.  THE DEEP2 GALAXY REDSHIFT SURVEY: THE VORONOI–DELAUNAY METHOD CATALOG OF GALAXY GROUPS , 2012, 1203.3899.

[2]  S. Borgani,et al.  Simulating the evolution of disc galaxies in a group environment – I. The influence of the global tidal field , 2012, 1202.0550.

[3]  H. Mo,et al.  EVOLUTION OF THE GALAXY–DARK MATTER CONNECTION AND THE ASSEMBLY OF GALAXIES IN DARK MATTER HALOS , 2011, 1110.1420.

[4]  M. Carollo,et al.  MASS AND ENVIRONMENT AS DRIVERS OF GALAXY EVOLUTION. II. THE QUENCHING OF SATELLITE GALAXIES AS THE ORIGIN OF ENVIRONMENTAL EFFECTS , 2011, 1106.2546.

[5]  R. Bender,et al.  A REVISED PARALLEL-SEQUENCE MORPHOLOGICAL CLASSIFICATION OF GALAXIES: STRUCTURE AND FORMATION OF S0 AND SPHEROIDAL GALAXIES , 2011, 1110.4384.

[6]  C. Conselice,et al.  Measures of Galaxy Environment I - What is "Environment"? , 2011, 1109.6328.

[7]  Puragra Guhathakurta,et al.  The DEEP3 Galaxy Redshift Survey: the impact of environment on the size evolution of massive early-type galaxies at intermediate redshift , 2011, 1109.5698.

[8]  B. Weiner,et al.  CALIBRATING THE STAR FORMATION RATE AT z ∼ 1 FROM OPTICAL DATA , 2011, 1108.2503.

[9]  J. Tinker,et al.  Galaxy evolution in groups and clusters: star formation rates, red sequence fractions and the persistent bimodality , 2011, 1107.5311.

[10]  H. Hildebrandt,et al.  TRACING THE STAR-FORMATION–DENSITY RELATION TO z ∼ 2 , 2011, 1104.1426.

[11]  Tristan L. Smith,et al.  NEW CONSTRAINTS ON THE EVOLUTION OF THE STELLAR-TO-DARK MATTER CONNECTION: A COMBINED ANALYSIS OF GALAXY–GALAXY LENSING, CLUSTERING, AND STELLAR MASS FUNCTIONS FROM z = 0.2 to z = 1 , 2011, 1104.0928.

[12]  A. Leauthaud,et al.  A THEORETICAL FRAMEWORK FOR COMBINING TECHNIQUES THAT PROBE THE LINK BETWEEN GALAXIES AND DARK MATTER , 2011, 1103.2077.

[13]  Stsci,et al.  Disentangling galaxy environment and host halo mass , 2011, 1103.0547.

[14]  Alison L. Coil,et al.  THE DEEP3 GALAXY REDSHIFT SURVEY: KECK/DEIMOS SPECTROSCOPY IN THE GOODS-N FIELD , 2011, 1101.4018.

[15]  C. Conselice,et al.  How does galaxy environment matter? The relationship between galaxy environments, colour and stellar mass at 0.4 < z < 1 in the Palomar/DEEP2 survey , 2010, 1009.3189.

[16]  C. Conselice,et al.  Absence of evidence is not evidence of absence: the colour–density relation at fixed stellar mass persists to z∼ 1 , 2010, 1007.1967.

[17]  J. Newman,et al.  On the evolution of the velocity–mass–size relations of disc-dominated galaxies over the past 10 billion years , 2010, 1006.3558.

[18]  Heidelberg,et al.  A multiscale approach to environment and its influence on the colour distribution of galaxies , 2010, 1004.2254.

[19]  B. Garilli,et al.  MASS AND ENVIRONMENT AS DRIVERS OF GALAXY EVOLUTION IN SDSS AND zCOSMOS AND THE ORIGIN OF THE SCHECHTER FUNCTION , 2010, 1003.4747.

[20]  S. More,et al.  Satellite kinematics – III. Halo masses of central galaxies in SDSS , 2010, 1003.3203.

[21]  K. Glazebrook,et al.  Erratum: The local star formation rate density: assessing calibrations using [O ii], Hα and UV luminosities , 2010, 1002.3172.

[22]  S. M. Fall,et al.  STELLAR FEEDBACK IN MOLECULAR CLOUDS AND ITS INFLUENCE ON THE MASS FUNCTION OF YOUNG STAR CLUSTERS , 2009, 0910.2238.

[23]  V. Wild,et al.  Star formation and AGN activity in SDSS cluster galaxies , 2009, 0909.3522.

[24]  G. Kauffmann,et al.  Cluster galaxies die hard , 2009, 0912.2741.

[25]  G. Brammer,et al.  THE DEAD SEQUENCE: A CLEAR BIMODALITY IN GALAXY COLORS FROM z = 0 to z = 2.5 , 2009, 0910.2227.

[26]  U. Cambridge,et al.  The accretion of galaxies into groups and clusters , 2009, 0908.0750.

[27]  R. Teyssier,et al.  MORPHOLOGICAL QUENCHING OF STAR FORMATION: MAKING EARLY-TYPE GALAXIES RED , 2009, 0905.4669.

[28]  B. Weiner,et al.  SUBMITTED TO APJ Preprint typeset using LATEX style emulateapj v. 10/09/06 MID-IR LUMINOSITIES AND UV/OPTICAL STAR FORMATION RATES AT Z < 1.4 , 2009 .

[29]  R. Somerville,et al.  CONSTRAINTS ON THE RELATIONSHIP BETWEEN STELLAR MASS AND HALO MASS AT LOW AND HIGH REDSHIFT , 2009, 0903.4682.

[30]  Michael C. Cooper,et al.  THE LARGE-SCALE ENVIRONMENTS OF TYPE Ia SUPERNOVAE: EVIDENCE FOR A METALLICITY BIAS IN THE RATE OR LUMINOSITY OF PROMPT Ia EVENTS , 2009, 0901.4338.

[31]  Daniel Ceverino,et al.  FORMATION OF MASSIVE GALAXIES AT HIGH REDSHIFT: COLD STREAMS, CLUMPY DISKS, AND COMPACT SPHEROIDS , 2009, 0901.2458.

[32]  N. Katz,et al.  The dynamics of satellite disruption in cold dark matter haloes , 2008, 0812.0009.

[33]  K. Jahnke,et al.  The STAGES view of red spirals and dusty red galaxies: Mass-dependent quenching of star formation in cluster infall , 2008, 0811.3873.

[34]  F. Fontanot,et al.  The correlation of star formation quenching with internal galaxy properties and environment , 2008, 0810.2794.

[35]  H. Mo,et al.  GALAXY GROUPS IN THE SDSS DR4. III. THE LUMINOSITY AND STELLAR MASS FUNCTIONS , 2008, 0808.0539.

[36]  R. Mandelbaum,et al.  Halo masses for optically selected and for radio-loud AGN from clustering and galaxy-galaxy lensing , 2008, 0806.4089.

[37]  R. Skibba Central and satellite colours in galaxy groups: a comparison of the halo model and SDSS group catalogues , 2008, 0805.1233.

[38]  D. Hogg,et al.  THE INTRINSIC PROPERTIES OF SDSS GALAXIES , 2008, 0801.3286.

[39]  R. Wechsler,et al.  THE GALAXY CONTENT OF SDSS CLUSTERS AND GROUPS , 2007, 0710.3780.

[40]  S. More,et al.  Galaxy clustering and galaxy-galaxy lensing: a promising union to constrain cosmological parameters , 2008, 0807.4932.

[41]  S. More,et al.  Satellite kinematics -I. A new method to constrain the halo mass-luminosity relation of central galaxies , 2008, 0807.4529.

[42]  Alexander S. Szalay,et al.  Galaxy Zoo: the dependence of morphology and colour on environment , 2008, 0805.2612.

[43]  R. Skibba,et al.  A halo model of galaxy colours and clustering in the Sloan Digital Sky Survey , 2008, 0805.0310.

[44]  Michael S. Warren,et al.  Toward a Halo Mass Function for Precision Cosmology: The Limits of Universality , 2008, 0803.2706.

[45]  J. Newman,et al.  The Environment on a Few Mpc Scales of Infrared Luminous Galaxies at Redshift z~1 , 2007, 0712.0033.

[46]  Y. Wadadekar,et al.  Submitted to ApJS Preprint typeset using L ATEX style emulateapj v. 10/09/06 THE SIXTH DATA RELEASE OF THE SLOAN DIGITAL SKY SURVEY , 2022 .

[47]  S. Roweis,et al.  An Improved Photometric Calibration of the Sloan Digital Sky Survey Imaging Data , 2007, astro-ph/0703454.

[48]  A. Hopkins,et al.  The Evolution of Galaxy Mergers and Morphology at z < 1.2 in the Extended Groth Strip , 2006, astro-ph/0602088.

[49]  Benjamin D. Johnson,et al.  The UV-Optical Color Magnitude Diagram. II. Physical Properties and Morphological Evolution On and Off of a Star-forming Sequence , 2007, 0711.4823.

[50]  H. Mo,et al.  Galaxy Groups in the SDSS DR4. II. Halo Occupation Statistics , 2007, 0710.5096.

[51]  Anna Pasquali,et al.  Galaxy Groups in the SDSS DR4. I. The Catalog and Basic Properties , 2007, 0707.4640.

[52]  A. Dekel,et al.  Gravitational quenching in massive galaxies and clusters by clumpy accretion , 2007, 0707.1214.

[53]  G. Busarello,et al.  The Different Physical Mechanisms that Drive the Star-Formation Histories of Giant and Dwarf Galaxies , 2007, 0707.1262.

[54]  C. Conselice,et al.  The DEEP2 Galaxy Redshift Survey: the role of galaxy environment in the cosmic star formation history , 2007, 0706.4089.

[55]  Benjamin D. Johnson,et al.  UV Star Formation Rates in the Local Universe , 2007, 0704.3611.

[56]  J. Starck,et al.  The reversal of the star formation-density relation in the distant universe , 2007, astro-ph/0703653.

[57]  A. Dekel,et al.  Bursting and quenching in massive galaxies without major mergers or AGNs , 2007, astro-ph/0703435.

[58]  A. C. Phillips,et al.  AEGIS: Extinction and Star Formation Tracers from Line Emission , 2006, The Astrophysical Journal.

[59]  M. Brodwin,et al.  The Evolving Luminosity Function of Red Galaxies , 2006, astro-ph/0609584.

[60]  J. Newman,et al.  The DEEP2 galaxy redshift survey: the evolution of the blue fraction in groups and the field , 2006, astro-ph/0608569.

[61]  M. Blanton,et al.  What Aspects of Galaxy Environment Matter? , 2006, astro-ph/0608353.

[62]  E. L. Wright,et al.  The All-Wavelength Extended Groth Strip International Survey (AEGIS) Data Sets , 2006, astro-ph/0607355.

[63]  S. Roweis,et al.  K-Corrections and Filter Transformations in the Ultraviolet, Optical, and Near-Infrared , 2006, astro-ph/0606170.

[64]  R. Davé,et al.  Accretion, feedback and galaxy bimodality: a comparison of the GalICS semi‐analytic model and cosmological SPH simulations , 2006, astro-ph/0605750.

[65]  D. Croton,et al.  Properties of galaxy groups in the Sloan Digital Sky Survey – II. Active galactic nucleus feedback and star formation truncation , 2006 .

[66]  A. Connolly,et al.  The Deep Evolutionary Exploratory Probe 2 Galaxy Redshift Survey: The Galaxy Luminosity Function to z ~ 1 , 2006 .

[67]  S. Bamford,et al.  Galaxy bimodality versus stellar mass and environment , 2006, astro-ph/0607648.

[68]  D. Madgwick,et al.  The DEEP2 Galaxy Redshift Survey: the relationship between galaxy properties and environment at z∼ 1 , 2006, astro-ph/0603177.

[69]  UCOLick,et al.  Submitted to ApJ Preprint typeset using L ATEX style emulateapj v. 6/22/04 THE MASS ASSEMBLY HISTORY OF FIELD GALAXIES: DETECTION OF AN EVOLVING MASS LIMIT FOR STAR FORMING GALAXIES , 2005 .

[70]  G. Kauffmann,et al.  The many lives of active galactic nuclei: cooling flows, black holes and the luminosities and colour , 2005, astro-ph/0508046.

[71]  Michael S. Warren,et al.  Precision Determination of the Mass Function of Dark Matter Halos , 2005, astro-ph/0506395.

[72]  Volker Springel,et al.  The Many lives of AGN: Cooling flows, black holes and the luminosities and colours of galaxies , 2006, astro-ph/0602065.

[73]  H. Mo,et al.  Properties of galaxy groups in the Sloan Digital Sky Survey – I. The dependence of colour, star formation and morphology on halo mass , 2005, astro-ph/0509147.

[74]  Jan T. Kleyna,et al.  The tidal stripping of satellites , 2005, astro-ph/0506687.

[75]  D. Madgwick,et al.  Measuring Galaxy Environments with Deep Redshift Surveys , 2005, astro-ph/0506518.

[76]  Tucson,et al.  Infrared Luminosity Functions from the Chandra Deep Field-South: The Spitzer View on the History of Dusty Star Formation at 0 ≲ z ≲ 1* , 2005, astro-ph/0506462.

[77]  A. Connolly,et al.  The DEEP2 Galaxy Redshift Survey: The Galaxy Luminosity Function to z ~ 1 , 2005, astro-ph/0506041.

[78]  A. Szalay,et al.  Galaxy Luminosity Functions to z~1 from DEEP2 and COMBO-17: Implications for Red Galaxy Formation , 2005, astro-ph/0506044.

[79]  J. Brinkmann,et al.  New York University Value-Added Galaxy Catalog: A Galaxy Catalog Based on New Public Surveys , 2005 .

[80]  R. Nichol,et al.  The C4 Clustering Algorithm: Clusters of Galaxies in the Sloan Digital Sky Survey , 2005, astro-ph/0503713.

[81]  M. Milosavljevic,et al.  Dissipationless Merging and the Assembly of Central Galaxies , 2005, astro-ph/0503596.

[82]  H. Rix,et al.  Toward an Understanding of the Rapid Decline of the Cosmic Star Formation Rate , 2005, astro-ph/0502246.

[83]  D. Schiminovich,et al.  Testing the Empirical Relation between Ultraviolet Color and Attenuation of Galaxies , 2005 .

[84]  D. Eisenstein,et al.  Interpreting the Relationship between Galaxy Luminosity, Color, and Environment , 2004, astro-ph/0406633.

[85]  A. Dekel,et al.  Galaxy bimodality due to cold flows and shock heating , 2004, astro-ph/0412300.

[86]  S. Okamura,et al.  The Environmental Dependence of Galaxy Properties in the Local Universe: Dependences on Luminosity, Local Density, and System Richness , 2004, astro-ph/0411132.

[87]  T. D. Matteo,et al.  Modelling feedback from stars and black holes in galaxy mergers , 2004, astro-ph/0411108.

[88]  J. Newman,et al.  The DEEP2 Galaxy Redshift Survey: First Results on Galaxy Groups , 2004, astro-ph/0410721.

[89]  J. Brinkmann,et al.  NYU-VAGC: a galaxy catalog based on new public surveys , 2004, astro-ph/0410166.

[90]  R. Nichol,et al.  The Bimodal Galaxy Color Distribution: Dependence on Luminosity and Environment , 2004, astro-ph/0406266.

[91]  J. Brinkmann,et al.  The Origin of the Mass-Metallicity Relation: Insights from 53,000 Star-forming Galaxies in the Sloan Digital Sky Survey , 2004, astro-ph/0405537.

[92]  J. Newman,et al.  Evolution and Color Dependence of the Galaxy Angular Correlation Function: 350,000 Galaxies in 5 Square Degrees , 2004, astro-ph/0403423.

[93]  J. Brinkmann,et al.  The environmental dependence of the relations between stellar mass, structure, star formation and nuclear activity in galaxies , 2004, astro-ph/0402030.

[94]  M. White,et al.  Mock Catalogs for the DEEP2 redshift survey , 2003, astro-ph/0311230.

[95]  J. Brinkmann,et al.  The physical properties of star-forming galaxies in the low-redshift universe , 2003, astro-ph/0311060.

[96]  R. Nichol,et al.  Quantifying the Bimodal Color-Magnitude Distribution of Galaxies , 2003, astro-ph/0309710.

[97]  G. Granato,et al.  A Physical Model for the Coevolution of QSOs and Their Spheroidal Hosts , 2003, astro-ph/0307202.

[98]  J. Brinkmann,et al.  Selection and Photometric Properties of K+A Galaxies , 2003, astro-ph/0307074.

[99]  Heidelberg,et al.  Nearly 5000 Distant Early-Type Galaxies in COMBO-17: A Red Sequence and Its Evolution since z ~ 1 , 2003, astro-ph/0303394.

[100]  S. M. Fall,et al.  Star formation history and dust content of galaxies drawn from ultraviolet surveys , 2003, astro-ph/0312474.

[101]  J. Brinkmann,et al.  Relationship between Environment and the Broadband Optical Properties of Galaxies in the Sloan Digital Sky Survey , 2003, astro-ph/0310453.

[102]  G. Bruzual,et al.  Stellar population synthesis at the resolution of 2003 , 2003, astro-ph/0309134.

[103]  E. Bell,et al.  The Optical and Near-Infrared Properties of Galaxies. I. Luminosity and Stellar Mass Functions , 2003, astro-ph/0302543.

[104]  Y. Birnboim,et al.  Virial shocks in galactic haloes , 2003, astro-ph/0302161.

[105]  D. York,et al.  The Overdensities of Galaxy Environments as a Function of Luminosity and Color , 2002, astro-ph/0212085.

[106]  Christopher J. Miller,et al.  Galaxy Star Formation as a Function of Environment in the Early Data Release of the Sloan Digital Sky Survey , 2002, astro-ph/0210193.

[107]  Marc Davis,et al.  Science Objectives and Early Results of the DEEP2 Redshift Survey , 2002, SPIE Astronomical Telescopes + Instrumentation.

[108]  R. Davé,et al.  How do galaxies get their gas , 2002, astro-ph/0407095.

[109]  R. Nichol,et al.  Stellar masses and star formation histories for 105 galaxies from the Sloan Digital Sky Survey , 2002, astro-ph/0204055.

[110]  Michael J. Kurtz,et al.  CAIRNS: The Cluster and Infall Region Nearby Survey. I. Redshifts and Mass Profiles , 2003, astro-ph/0506660.

[111]  Mamoru Doi,et al.  Estimating Fixed-Frame Galaxy Magnitudes in the Sloan Digital Sky Survey , 2002, astro-ph/0205243.

[112]  Michael J. Kurtz,et al.  Star Formation in a Complete Spectroscopic Survey of Galaxies , 2001, astro-ph/0107258.

[113]  V. Narayanan,et al.  Color Separation of Galaxy Types in the Sloan Digital Sky Survey Imaging Data , 2001, astro-ph/0107201.

[114]  R. Schiavon,et al.  Are There Blue, Massive E/S0 Galaxies at z < 1? Kinematics of Blue Spheroidal Galaxy Candidates , 2001, astro-ph/0105389.

[115]  D. Elbaz,et al.  Interpreting the Cosmic Infrared Background: Constraints on the Evolution of the Dust-enshrouded Star Formation Rate , 2001, astro-ph/0103067.

[116]  P. Kroupa On the variation of the initial mass function , 2000, astro-ph/0009005.

[117]  Padova,et al.  Populating a cluster of galaxies - I. Results at z=0 , 2000, astro-ph/0012055.

[118]  Walter A. Siegmund,et al.  The Sloan Digital Sky Survey: Technical Summary , 2000, astro-ph/0006396.

[119]  J. Navarro,et al.  The Origin of Star Formation Gradients in Rich Galaxy Clusters , 2000, astro-ph/0004078.

[120]  Nusser,et al.  Large-Scale Motions in Superclusters: Their Imprint in the Cosmic Microwave Background , 1999, The Astrophysical journal.

[121]  R. Bower,et al.  Ram pressure stripping of spiral galaxies in clusters , 1999, astro-ph/9903436.

[122]  Robert Lupton,et al.  A Modified Magnitude System that Produces Well-Behaved Magnitudes, Colors, and Errors Even for Low Signal-to-Noise Ratio Measurements , 1999, astro-ph/9903081.

[123]  Huan Lin,et al.  The CNOC2 Field Galaxy Luminosity Function. I. A Description of Luminosity Function Evolution , 1999, astro-ph/9902249.

[124]  Jr.,et al.  STAR FORMATION IN GALAXIES ALONG THE HUBBLE SEQUENCE , 1998, astro-ph/9807187.

[125]  Wayne Hu,et al.  Baryonic Features in the Matter Transfer Function , 1997, astro-ph/9709112.

[126]  G. Lake,et al.  Morphological Transformation from Galaxy Harassment , 1997, astro-ph/9701211.

[127]  S. White,et al.  A Universal Density Profile from Hierarchical Clustering , 1996, astro-ph/9611107.

[128]  G. Lake,et al.  Galaxy harassment and the evolution of clusters of galaxies , 1995, Nature.

[129]  J. Silk,et al.  Dwarf galaxies, cold dark matter, and biased galaxy formation , 1986 .

[130]  James E. Gunn,et al.  Spectroscopy of galaxies in distant clusters. II: The population of the 3C 295 cluster , 1983 .

[131]  B. Tinsley,et al.  The evolution of disk galaxies and the origin of S0 galaxies , 1980 .

[132]  A. Dressler Galaxy morphology in rich clusters: Implications for the formation and evolution of galaxies , 1980 .

[133]  Marc Davis,et al.  Galaxy Correlations as a Function of Morphological Type , 1975 .

[134]  Jr. Oemler Augustus The Systematic Properties of Clusters of Galaxies. Photometry of 15 Clusters , 1974 .

[135]  William H. Press,et al.  Formation of Galaxies and Clusters of Galaxies by Self-Similar Gravitational Condensation , 1974 .

[136]  J. Gunn,et al.  On the Infall of Matter into Clusters of Galaxies and Some Effects on Their Evolution , 1972 .