Indirect Causes in Dynamic Bayesian Networks Revisited

Modeling causal dependencies often demands cycles at a coarse-grained temporal scale. If Bayesian networks are to be used for modeling uncertainties, cycles are eliminated with dynamic Bayesian networks, spreading indirect dependencies over time and enforcing an infinitesimal resolution of time. Without a "causal design," i.e., without anticipating indirect influences appropriately in time, we argue that such networks return spurious results. By introducing activator random variables, we propose template fragments for modeling dynamic Bayesian networks under a causal use of time, anticipating indirect influences on a solid mathematical basis, obeying the laws of Bayesian networks.

[1]  David Heckerman,et al.  Knowledge Representation and Inference in Similarity Networks and Bayesian Multinets , 1996, Artif. Intell..

[2]  Jennifer Chu-Carroll,et al.  Building Watson: An Overview of the DeepQA Project , 2010, AI Mag..

[3]  David Heckerman,et al.  Causal independence for probability assessment and inference using Bayesian networks , 1996, IEEE Trans. Syst. Man Cybern. Part A.

[4]  Jörg Gebhardt,et al.  Symbolic and Quantitative Approaches to Reasoning and Uncertainty , 1995, Lecture Notes in Computer Science.

[5]  Ralf Möller,et al.  Probabilistic Mission Impact Assessment based on Widespread Local Events , 2015 .

[6]  Gregory F. Cooper,et al.  The Computational Complexity of Probabilistic Inference Using Bayesian Belief Networks , 1990, Artif. Intell..

[7]  Alexander J. Hartemink,et al.  Non-stationary dynamic Bayesian networks , 2008, NIPS.

[8]  S. Crawford,et al.  Volume 1 , 2012, Journal of Diabetes Investigation.

[9]  Luc De Raedt,et al.  Inference and learning in probabilistic logic programs using weighted Boolean formulas , 2013, Theory and Practice of Logic Programming.

[10]  Zoubin Ghahramani,et al.  An Introduction to Hidden Markov Models and Bayesian Networks , 2001, Int. J. Pattern Recognit. Artif. Intell..

[11]  Hector J. Levesque,et al.  The Winograd Schema Challenge , 2011, AAAI Spring Symposium: Logical Formalizations of Commonsense Reasoning.

[12]  Alan Bundy,et al.  Symbolic and Quantitative Approaches to Reasoning and Uncertainty , 1993 .

[13]  Stuart J. Russell,et al.  Approximate Inference for Infinite Contingent Bayesian Networks , 2005, AISTATS.

[14]  Avi Pfeffer,et al.  Asynchronous Dynamic Bayesian Networks , 2005, UAI.

[15]  Peter Haddawy,et al.  A Theoretical Framework for Context-Sensitive Temporal Probability Model Construction with Application to Plan Projection , 1995, UAI.

[16]  Barton C. Massey Fast perfect weighted resampling , 2008, 2008 IEEE International Conference on Acoustics, Speech and Signal Processing.

[17]  P Haddawy,et al.  Clinical simulation using context-sensitive temporal probability models. , 1995, Proceedings. Symposium on Computer Applications in Medical Care.

[18]  Judea Pearl,et al.  Reasoning with Cause and Effect , 1999, IJCAI.

[19]  Ralf Möller,et al.  Exploiting Innocuousness in Bayesian Networks , 2015, Australasian Conference on Artificial Intelligence.

[20]  Craig Boutilier,et al.  Context-Specific Independence in Bayesian Networks , 1996, UAI.

[21]  Fredrik Gustafsson,et al.  On Resampling Algorithms for Particle Filters , 2006, 2006 IEEE Nonlinear Statistical Signal Processing Workshop.

[22]  Pedro M. Domingos,et al.  Relational Dynamic Bayesian Networks , 2005, J. Artif. Intell. Res..

[23]  Sabine Glesner,et al.  Constructing Flexible Dynamic Belief Networks from First-Order Probalistic Knowledge Bases , 1995, ECSQARU.

[24]  Stuart J. Russell,et al.  Dynamic bayesian networks: representation, inference and learning , 2002 .

[25]  Ralf Möller,et al.  Context- and bias-free probabilistic mission impact assessment , 2017, Comput. Secur..

[26]  Luis M. de Campos,et al.  Searching for Bayesian Network Structures in the Space of Restricted Acyclic Partially Directed Graphs , 2011, J. Artif. Intell. Res..

[27]  Jeff A. Bilmes,et al.  Dynamic Bayesian Multinets , 2000, UAI.

[28]  Peter Haddawy,et al.  Answering Queries from Context-Sensitive Probabilistic Knowledge Bases (cid:3) , 1996 .

[29]  J. van Leeuwen,et al.  Theoretical Computer Science , 2003, Lecture Notes in Computer Science.

[30]  Peter Norvig,et al.  Artificial Intelligence: A Modern Approach , 1995 .

[31]  Daphne Koller,et al.  Continuous Time Bayesian Networks , 2012, UAI.

[32]  Le Song,et al.  Time-Varying Dynamic Bayesian Networks , 2009, NIPS.

[33]  Manfred Jaeger,et al.  Complex Probabilistic Modeling with Recursive Relational Bayesian Networks , 2001, Annals of Mathematics and Artificial Intelligence.

[34]  Neil J. Gordon,et al.  A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking , 2002, IEEE Trans. Signal Process..

[35]  Servicio Geológico Colombiano Sgc Volume 4 , 2013, Journal of Diabetes Investigation.

[36]  V. Didelez,et al.  Judea Pearl: Causality: Models, reasoning, and inference , 2001 .

[37]  Luc De Raedt,et al.  ProbLog: A Probabilistic Prolog and its Application in Link Discovery , 2007, IJCAI.

[38]  Michael Clarke,et al.  Symbolic and Quantitative Approaches to Reasoning and Uncertainty , 1991, Lecture Notes in Computer Science.

[39]  Alexander Motzek,et al.  Indirect causes, dependencies and causality in Bayesian networks , 2017 .

[40]  Judea Pearl,et al.  Bayesian Networks , 1998, Encyclopedia of Social Network Analysis and Mining. 2nd Ed..

[41]  Wei Zhang,et al.  Knowledge vault: a web-scale approach to probabilistic knowledge fusion , 2014, KDD.

[42]  A. Doucet,et al.  A Tutorial on Particle Filtering and Smoothing: Fifteen years later , 2008 .

[43]  Alexander J. Hartemink,et al.  Learning Non-Stationary Dynamic Bayesian Networks , 2010, J. Mach. Learn. Res..

[44]  Manfred Jaeger,et al.  Relational Bayesian Networks , 1997, UAI.

[45]  Nevin Lianwen Zhang,et al.  Exploiting Contextual Independence In Probabilistic Inference , 2011, J. Artif. Intell. Res..

[46]  J. Pearl Causality: Models, Reasoning and Inference , 2000 .

[47]  Alison L Gibbs,et al.  On Choosing and Bounding Probability Metrics , 2002, math/0209021.

[48]  Nando de Freitas,et al.  Rao-Blackwellised Particle Filtering for Dynamic Bayesian Networks , 2000, UAI.

[49]  M. Drton Discrete chain graph models , 2009, 0909.0843.

[50]  Max Henrion,et al.  Practical issues in constructing a Bayes belief network , 1987, Int. J. Approx. Reason..

[51]  Kevin P. Murphy,et al.  Machine learning - a probabilistic perspective , 2012, Adaptive computation and machine learning series.