Geometrically Accurate Topology-Correction of Cortical Surfaces Using Nonseparating Loops

In this paper, we focus on the retrospective topology correction of surfaces. We propose a technique to accurately correct the spherical topology of cortical surfaces. Specifically, we construct a mapping from the original surface onto the sphere to detect topological defects as minimal nonhomeomorphic regions. The topology of each defect is then corrected by opening and sealing the surface along a set of nonseparating loops that are selected in a Bayesian framework. The proposed method is a wholly self-contained topology correction algorithm, which determines geometrically accurate, topologically correct solutions based on the magnetic resonance imaging (MRI) intensity profile and the expected local curvature. Applied to real data, our method provides topological corrections similar to those made by a trained operator

[1]  Zoë J. Wood,et al.  Topological Noise Removal , 2001, Graphics Interface.

[2]  Hervé Delingette,et al.  General Object Reconstruction Based on Simplex Meshes , 1999, International Journal of Computer Vision.

[3]  Zoë J. Wood,et al.  Isosurface Topology Simplification , 2002 .

[4]  G. Perelman The entropy formula for the Ricci flow and its geometric applications , 2002, math/0211159.

[5]  B. Natarajan On generating topologically consistent isosurfaces from uniform samples , 1994, The Visual Computer.

[6]  Anne Verroust-Blondet,et al.  Computing a canonical polygonal schema of an orientable triangulated surface , 2001, SCG '01.

[7]  Erin W. Chambers,et al.  Splitting (complicated) surfaces is hard , 2008, Comput. Geom..

[8]  Isabelle Bloch,et al.  From 3D magnetic resonance images to structural representations of the cortex topography using topology preserving deformations , 1995, Journal of Mathematical Imaging and Vision.

[9]  Jerry L. Prince,et al.  Medical image seg-mentation using deformable models , 2000 .

[10]  W. Eric L. Grimson,et al.  Active Contours Under Topology Control Genus Preserving Level Sets , 2005, CVBIA.

[11]  Anders M. Dale,et al.  Cortical Surface-Based Analysis I. Segmentation and Surface Reconstruction , 1999, NeuroImage.

[12]  A. Dale,et al.  Whole Brain Segmentation Automated Labeling of Neuroanatomical Structures in the Human Brain , 2002, Neuron.

[13]  Anders M. Dale,et al.  Improved Localization of Cortical Activity By Combining EEG and MEG with MRI Cortical Surface Reconstruction , 2002 .

[14]  Leif Kobbelt,et al.  Isosurface reconstruction with topology control , 2002, 10th Pacific Conference on Computer Graphics and Applications, 2002. Proceedings..

[15]  S. Yau,et al.  Global conformal surface parameterization , 2003 .

[16]  A. Dale,et al.  Thinning of the cerebral cortex in aging. , 2004, Cerebral cortex.

[17]  Demetri Terzopoulos,et al.  Snakes: Active contour models , 2004, International Journal of Computer Vision.

[18]  Rainer Goebel,et al.  An Efficient Algorithm for Topologically Correct Segmentation of the Cortical Sheet in Anatomical MR Volumes , 2001, NeuroImage.

[19]  G. Fein,et al.  Tissue segmentation of the brain in Alzheimer disease. , 1997, AJNR. American journal of neuroradiology.

[20]  J. Stillwell Classical topology and combinatorial group theory , 1980 .

[21]  Francis Lazarus,et al.  Optimal System of Loops on an Orientable Surface , 2005, Discret. Comput. Geom..

[22]  Christos Davatzikos,et al.  Topology Preservation and Regularity in Estimated Deformation Fields , 2003, IPMI.

[23]  Richard M. Leahy,et al.  Automated graph-based analysis and correction of cortical volume topology , 2001, IEEE Transactions on Medical Imaging.

[24]  Valerio Pascucci,et al.  Loops in Reeb Graphs of 2-Manifolds , 2004, Discret. Comput. Geom..

[25]  William E. Lorensen,et al.  Marching cubes: A high resolution 3D surface construction algorithm , 1987, SIGGRAPH.

[26]  D. V. van Essen,et al.  Computerized Mappings of the Cerebral Cortex: A Multiresolution Flattening Method and a Surface-Based Coordinate System , 1996, Journal of Cognitive Neuroscience.

[27]  G. Perelman Ricci flow with surgery on three-manifolds , 2003, math/0303109.

[28]  L O Hall,et al.  Review of MR image segmentation techniques using pattern recognition. , 1993, Medical physics.

[29]  Pierre-Louis Bazin,et al.  Topology Preserving Tissue Classification with Fast Marching and Topology Templates , 2005, IPMI.

[30]  Jakob Andreas Bærentzen,et al.  Signed Distance Computation Using the Angle Weighted Pseudonormal , 2005, IEEE Trans. Vis. Comput. Graph..

[31]  Xiao Han,et al.  A Topology Preserving Level Set Method for Geometric Deformable Models , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[32]  Y. Ninomiya,et al.  Leptin as a modulator of sweet taste sensitivities in mice. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[33]  R. Rabbitt,et al.  3D brain mapping using a deformable neuroanatomy. , 1994, Physics in medicine and biology.

[34]  Johan Montagnat,et al.  Shape and Topology Constraints on Parametric Active Contours , 2001, Comput. Vis. Image Underst..

[35]  Anders M. Dale,et al.  Automated manifold surgery: constructing geometrically accurate and topologically correct models of the human cerebral cortex , 2001, IEEE Transactions on Medical Imaging.

[36]  R. Kikinis,et al.  Temporal lobe sulco-gyral pattern anomalies in schizophrenia: an in vivo MR three-dimensional surface rendering study , 1994, Neuroscience Letters.

[37]  Guillermo Sapiro,et al.  Geodesic Active Contours , 1995, International Journal of Computer Vision.

[38]  Bruce Fischl,et al.  Geometrically-Accurate Topology Simplification of Triangulated Cortical Surfaces Using Non-Separating Loops Simplification de la Topologie des Surfaces Corticales , 2007 .

[39]  J. Baerentzen,et al.  Signed distance computation using the angle weighted pseudonormal , 2005, IEEE Transactions on Visualization and Computer Graphics.

[40]  Jerry L. Prince,et al.  Graph-Based Topology Correction for Brain Cortex Segmentation , 2001, IPMI.

[41]  D. V. van Essen,et al.  Structural and Functional Analyses of Human Cerebral Cortex Using a Surface-Based Atlas , 1997, The Journal of Neuroscience.

[42]  W. Eric L. Grimson,et al.  Topological Correction of Subcortical Segmentation , 2003, MICCAI.

[43]  Jacques-Olivier Lachaud,et al.  Deformable meshes with automated topology changes for coarse-to-fine three-dimensional surface extraction , 1999, Medical Image Anal..

[44]  A. Dale,et al.  High‐resolution intersubject averaging and a coordinate system for the cortical surface , 1999, Human brain mapping.

[45]  Jerry L Prince,et al.  Image Segmentation Using Deformable Models , 2000 .

[46]  Xiao Han,et al.  Statistical Study on Cortical Sulci of Human Brains , 2001, IPMI.

[47]  Jerry L Prince,et al.  Current methods in medical image segmentation. , 2000, Annual review of biomedical engineering.

[48]  Christos Davatzikos,et al.  Hierarchical Matching of Cortical Features for Deformable Brain Image Registration , 1999, IPMI.

[49]  A. Verroust,et al.  A control of smooth deformations with topological change on a polyhedral mesh based on curves and loops , 2002, Proceedings SMI. Shape Modeling International 2002.

[50]  W. Eric L. Grimson,et al.  A Genetic Algorithm for the Topology Correction of Cortical Surfaces , 2005, IPMI.

[51]  Florent Ségonne,et al.  Segmentation of medical images under topological constraints , 2005 .

[52]  Dominique Hasboun,et al.  Multi-object Deformable Templates Dedicated to the Segmentation of Brain Deep Structures , 1998, MICCAI.

[53]  Valerio Pascucci,et al.  Loops in Reeb Graphs of 2-Manifolds , 2003, SCG '03.

[54]  R. Ho Algebraic Topology , 2022 .

[55]  Pierre-Louis Bazin,et al.  Topology Correction Using Fast Marching Methods and Its Application to Brain Segmentation , 2005, MICCAI.

[56]  A. Toga,et al.  Cortical variability and asymmetry in normal aging and Alzheimer's disease. , 1998, Cerebral cortex.

[57]  Anders M. Dale,et al.  An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest , 2006, NeuroImage.

[58]  A M Dale,et al.  Measuring the thickness of the human cerebral cortex from magnetic resonance images. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[59]  J. Logan,et al.  Under-Recruitment and Nonselective Recruitment Dissociable Neural Mechanisms Associated with Aging , 2002, Neuron.

[60]  G. Perelman Finite extinction time for the solutions to the Ricci flow on certain three-manifolds , 2003, math/0307245.

[61]  A. Toga,et al.  Detection and mapping of abnormal brain structure with a probabilistic atlas of cortical surfaces. , 1997, Journal of computer assisted tomography.

[62]  Demetri Terzopoulos,et al.  Deformable models in medical image analysis: a survey , 1996, Medical Image Anal..

[63]  Alan C. Evans,et al.  Automated 3-D Extraction of Inner and Outer Surfaces of Cerebral Cortex from MRI , 2000, NeuroImage.

[64]  Francis Lazarus,et al.  Optimal System of Loops on an Orientable Surface , 2002, The 43rd Annual IEEE Symposium on Foundations of Computer Science, 2002. Proceedings..

[65]  J. Morris,et al.  Functional Brain Imaging of Young, Nondemented, and Demented Older Adults , 2000, Journal of Cognitive Neuroscience.

[66]  Demetri Terzopoulos,et al.  T-snakes: Topology adaptive snakes , 2000, Medical Image Anal..

[67]  James R. Munkres,et al.  Topology; a first course , 1974 .