Betonarme Yapı Elemanları için Güvenilirliğe Dayalı Yeni Yük ve Dayanım Katsayılarının Belirlenmesi

Bu calismada, yasanan buyuk depremlerden sonra Turkiye’de degisen tasarim ve uygulama kosullarina dayali olarak, betonarme yapi elemanlari icin yeni yuk ve dayanim katsayilari belirleme yontemi sunulmustur. Yontemin uygulamasi kesme gocme modundaki kirislere etkiyen sabit ve hareketli yuk kombinasyonu icin gerceklestirilmistir. Ilk once guvenilirlik analizi yapmak icin elde edilen veriler goz onunde bulundurularak, tasarim degiskenlerinin sahip oldugu belirsizlikler istatistiksel parametreler ile sayisallastirilmistir. Daha sonra, tasarim kosullarina dayali risk duzeyleri guvenilirlik indeksi, β, cinsinden hesaplanmistir. Hesaplanan bu β degerleri goz onunde tutularak hedef guvenilirlik indeksi, βT, uygun bir sekilde secilmistir. Son olarak, secilen guvenilirlik indeksi kullanilarak yuk ve dayanim katsayilari Gelistirilmis Birinci Mertebe Ikinci Moment yontemine gore hesaplanmistir

[1]  Kent Gylltoft,et al.  Safety formats for nonlinear analysis tested on concrete beams subjected to shear forces and bending moments , 2011 .

[2]  S. Ümit Dikmen,et al.  Deprem Bölgelerinde Zemin Sinifinin Sanayi Yapilarinin Maliyetine Etkisi , 2011 .

[3]  J. G. Macgregor,et al.  Statistical Descriptions of Strength of Concrete , 1979 .

[4]  Hayri Baytan Ozmen,et al.  Orta Yükseklikli Betonarme Binaların Türkiye’de Yaşanan Son Depremlerdeki Performansı , 2008 .

[5]  In Hwan Yang,et al.  Uncertainty and sensitivity analysis of time-dependent effects in concrete structures , 2007 .

[6]  Sunil Kumar Live loads in office buildings: point-in-time load intensity , 2002 .

[7]  Andrzej S. Nowak,et al.  Calibration of Design Code for Buildings (ACI 318): Part 2—Reliability Analysis and Resistance Factors , 2003 .

[8]  Junho Song,et al.  Probabilistic shear strength models for reinforced concrete beams without shear reinforcement , 2010 .

[9]  Alper Ilki,et al.  Failures of masonry and concrete buildings during the March 8, 2010 Kovancılar and Palu (Elazığ) Earthquakes in Turkey , 2011 .

[10]  E C C Choi LIVE LOAD IN OFFICE BUILDINGS. POINT-IN-TIME LOAD INTENSITY OF ROOMS. , 1992 .

[11]  Andrzej S. Nowak,et al.  Calibration of Design Code for Buildings (ACI 318): Part 1—Statistical Models for Resistance , 2003 .

[12]  James G. MacGregor Load and Resistance Factors for Concrete Design , 1983 .

[13]  Han Ping Hong,et al.  Modeling error analysis of shear predicting models for RC beams , 2006 .

[14]  Fath Kürat Firat DEVELOPMENT OF LOAD AND RESISTANCE FACTORS FOR REINFORCED CONCRETE STRUCTURES IN TURKEY , 2007 .

[15]  Mauro de Vasconcellos Real,et al.  Response variability in reinforced concrete structures with uncertain geometrical and material properties , 2003 .

[16]  Hanifi Binici March 12 and June 6, 2005 Bingol–Karliova earthquakes and the damages caused by the material quality and low workmanship in the recent earthquakes , 2007 .

[17]  Halil Sezen,et al.  The 2011 Earthquake in Simav, Turkey and Seismic Damage to Reinforced Concrete Buildings , 2013 .

[18]  A. M. Hasofer,et al.  Exact and Invariant Second-Moment Code Format , 1974 .

[19]  Wilson H. Tang,et al.  Probability concepts in engineering planning and design , 1984 .

[20]  Bruce R. Ellingwood,et al.  Seismic fragilities for non-ductile reinforced concrete frames – Role of aleatoric and epistemic uncertainties , 2010 .

[21]  Sunil Kumar,et al.  Live loads in office buildings: lifetime maximum load , 2002 .

[22]  Bruce Ellingwood,et al.  Development of a probability based load criterion for American National Standard A58 , 1980 .