An introduction to differential linear logic: proof-nets, models and antiderivatives

Differential Linear Logic enriches Linear Logic with additional logical rules for the exponential connectives, dual to the usual rules of dereliction, weakening and contraction. We present a proof-net syntax for Differential Linear Logic and a categorical axiomatization of its denotational models. We also introduce a simple categorical condition on these models under which a general antiderivative operation becomes available. Last we briefly describe the model of sets and relations and give a more detailed account of the model of finiteness spaces and linear and continuous functions.

[1]  Thomas Ehrhard,et al.  Uniformity and the Taylor expansion of ordinary lambda-terms , 2008, Theor. Comput. Sci..

[2]  de Ng Dick Bruijn Generalizing Automath by means of a lambda-typed lambda calculus , 1987 .

[3]  Full Abstraction for Resource Calculus with Tests , 2011, CSL.

[4]  Samson Abramsky,et al.  Computational Interpretations of Linear Logic , 1993, Theor. Comput. Sci..

[5]  Christine Tasson Algebraic Totality, towards Completeness , 2009, TLCA.

[6]  Stéphane Gimenez Realizability Proof for Normalization of Full Differential Linear Logic , 2011, TLCA.

[7]  Michele Pagani,et al.  Parallel Reduction in Resource Lambda-Calculus , 2009, APLAS.

[8]  J. Robin B. Cockett,et al.  Differential categories , 2006, Mathematical Structures in Computer Science.

[9]  Thomas Ehrhard,et al.  A convenient differential category , 2010, ArXiv.

[10]  Dominic R. Verity,et al.  ∞-Categories for the Working Mathematician , 2018 .

[11]  Christine Tasson,et al.  SéMantiques et Syntaxes vectorielles de la logique LinéAIRE. (Vectorial Semantics and Syntax of Linear Logic) , 2009 .

[12]  Jean-Louis Krivine,et al.  A call-by-name lambda-calculus machine , 2007, High. Order Symb. Comput..

[13]  Thomas Ehrhard The Scott model of linear logic is the extensional collapse of its relational model , 2012, Theor. Comput. Sci..

[14]  Paolo Tranquilli Confluence of Pure Differential Nets with Promotion , 2009, CSL.

[15]  Thomas Ehrhard,et al.  On Köthe sequence spaces and linear logic , 2002, Mathematical Structures in Computer Science.

[16]  Marcelo P. Fiore,et al.  Differential Structure in Models of Multiplicative Biadditive Intuitionistic Linear Logic , 2007, TLCA.

[17]  Thomas Ehrhard A Finiteness Structure on Resource Terms , 2010, 2010 25th Annual IEEE Symposium on Logic in Computer Science.

[18]  Laurent Regnier,et al.  The differential lambda-calculus , 2003, Theor. Comput. Sci..

[19]  Pierre-Louis Curien,et al.  A semantics for lambda calculi with resources , 1999, Mathematical Structures in Computer Science.

[20]  Lionel Vaux The algebraic lambda calculus , 2009, Math. Struct. Comput. Sci..

[21]  Thomas Ehrhard,et al.  Finiteness spaces , 2005, Mathematical Structures in Computer Science.

[22]  Vincent Danos,et al.  Reversible, Irreversible and Optimal Lambda-machines , 1999, Linear Logic Tokyo Meeting.

[23]  Christine Tasson,et al.  Transport of finiteness structures and applications , 2010, Mathematical Structures in Computer Science.

[24]  Michele Pagani,et al.  The conservation theorem for differential nets , 2015, Mathematical Structures in Computer Science.

[25]  Michael Huth,et al.  Linear Domains and Linear Maps , 1993, MFPS.

[26]  Thomas Ehrhard,et al.  Böhm Trees, Krivine's Machine and the Taylor Expansion of Lambda-Terms , 2006, CiE.

[27]  Jean-Yves Girard,et al.  The System F of Variable Types, Fifteen Years Later , 1986, Theor. Comput. Sci..

[28]  Christian Retoré,et al.  Handsome proof-nets: perfect matchings and cographs , 2003, Theor. Comput. Sci..

[29]  Thomas Ehrhard,et al.  Krivine machine and the Taylor expansion of ordinary lambda-terms , 2005 .

[30]  Paul-André Melliès CATEGORICAL SEMANTICS OF LINEAR LOGIC , 2009 .

[32]  Jean-Yves Girard,et al.  Normal functors, power series and λ-calculus , 1988, Ann. Pure Appl. Log..

[33]  Patrick Lincoln,et al.  Linear logic , 1992, SIGA.

[34]  Lionel Vaux The differential lambdamu-calculus , 2007, Theor. Comput. Sci..

[35]  Vincent Danos,et al.  Reversible, Irreversible and Optimal lambda-Machines , 1999, Theor. Comput. Sci..

[36]  Gavin M. Bierman What is a Categorical Model of Intuitionistic Linear Logic? , 1995, TLCA.

[37]  Thomas Ehrhard,et al.  A new correctness criterion for MLL proof nets , 2014, CSL-LICS.

[38]  Michele Pagani,et al.  The Cut-Elimination Theorem for Differential Nets with Promotion , 2009, TLCA.

[39]  Ian Mackie,et al.  A Calculus for Interaction Nets , 1999, PPDP.

[40]  Ian Mackie,et al.  A Calculus for Interaction Nets Based on the Linear Chemical Abstract Machine , 2008, Electron. Notes Theor. Comput. Sci..