Generating Masks from Boxes by Mining Spatio-Temporal Consistencies in Videos

Segmenting objects in videos is a fundamental computer vision task. The current deep learning based paradigm offers a powerful, but data-hungry solution. However, current datasets are limited by the cost and human effort of annotating object masks in videos. This effectively limits the performance and generalization capabilities of existing video segmentation methods. To address this issue, we explore weaker form of bounding box annotations.We introduce a method for generating segmentation masks from per-frame bounding box annotations in videos. To this end, we propose a spatio-temporal aggregation module that effectively mines consistencies in the object and background appearance across multiple frames. We use our predicted accurate masks to train video object segmentation (VOS) networks for the tracking domain, where only manual bounding box annotations are available. The additional data provides substantially better generalization performance, leading to state-of-the-art results on standard tracking benchmarks. The code and models are available at https://github.com/visionml/pytracking.

[1]  Ross B. Girshick,et al.  Mask R-CNN , 2017, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[2]  Yi Li,et al.  Fully Convolutional Instance-Aware Semantic Segmentation , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[3]  Philip H. S. Torr,et al.  Siam R-CNN: Visual Tracking by Re-Detection , 2019, 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[4]  Yong Jiang,et al.  Reducing the Annotation Effort for Video Object Segmentation Datasets , 2020, 2021 IEEE Winter Conference on Applications of Computer Vision (WACV).

[5]  Bernt Schiele,et al.  Learning Video Object Segmentation from Static Images , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[6]  Thomas Brox,et al.  Lucid Data Dreaming for Object Tracking , 2017, ArXiv.

[7]  Jian Sun,et al.  Instance-Aware Semantic Segmentation via Multi-task Network Cascades , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[8]  Luca Bertinetto,et al.  Meta-learning with differentiable closed-form solvers , 2018, ICLR.

[9]  Sebastian Ramos,et al.  Vision-Based Offline-Online Perception Paradigm for Autonomous Driving , 2015, 2015 IEEE Winter Conference on Applications of Computer Vision.

[10]  Tong Lu,et al.  Deep-dense Conditional Random Fields for Object Co-segmentation , 2017, IJCAI.

[11]  Zhipeng Zhang,et al.  Ocean: Object-aware Anchor-free Tracking , 2020, ECCV.

[12]  Bin Yan,et al.  Alpha-Refine: Boosting Tracking Performance by Precise Bounding Box Estimation , 2020, 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[13]  L. Gool,et al.  Learning Discriminative Model Prediction for Tracking , 2019, 2019 IEEE/CVF International Conference on Computer Vision (ICCV).

[14]  Andrew Blake,et al.  Cosegmentation of Image Pairs by Histogram Matching - Incorporating a Global Constraint into MRFs , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[15]  Jitendra Malik,et al.  Simultaneous Detection and Segmentation , 2014, ECCV.

[16]  Ismail Ben Ayed,et al.  On Regularized Losses for Weakly-supervised CNN Segmentation , 2018, ECCV.

[17]  Saeid Nahavandi,et al.  Kangaroo Vehicle Collision Detection Using Deep Semantic Segmentation Convolutional Neural Network , 2016, 2016 International Conference on Digital Image Computing: Techniques and Applications (DICTA).

[18]  Jian Sun,et al.  ScribbleSup: Scribble-Supervised Convolutional Networks for Semantic Segmentation , 2016, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[19]  Michael Felsberg,et al.  A Generative Appearance Model for End-To-End Video Object Segmentation , 2018, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[20]  Christoph H. Lampert,et al.  Seed, Expand and Constrain: Three Principles for Weakly-Supervised Image Segmentation , 2016, ECCV.

[21]  Carsten Rother,et al.  Deep Object Co-Segmentation , 2018, ACCV.

[22]  Luc Van Gool,et al.  Probabilistic Regression for Visual Tracking , 2020, 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[23]  R. Hartley,et al.  Deep Declarative Networks: A New Hope , 2019, ArXiv.

[24]  Bernhard Rinner,et al.  Adaptive cartooning for privacy protection in camera networks , 2014, 2014 11th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS).

[25]  Felix Järemo Lawin,et al.  Learning What to Learn for Video Object Segmentation , 2020, ECCV.

[26]  Jiri Matas,et al.  The new VOT2020 short-term tracking performance evaluation protocol and measures , 2020 .

[27]  Bastian Leibe,et al.  FEELVOS: Fast End-To-End Embedding Learning for Video Object Segmentation , 2019, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[28]  Ambrish Tyagi,et al.  Box2Seg: Attention Weighted Loss and Discriminative Feature Learning for Weakly Supervised Segmentation , 2020, ECCV.

[29]  Ning Xu,et al.  Video Object Segmentation Using Space-Time Memory Networks , 2019, 2019 IEEE/CVF International Conference on Computer Vision (ICCV).

[30]  Alexander G. Schwing,et al.  VideoMatch: Matching based Video Object Segmentation , 2018, ECCV.

[31]  Bernard Ghanem,et al.  TrackingNet: A Large-Scale Dataset and Benchmark for Object Tracking in the Wild , 2018, ECCV.

[32]  Fan Yang,et al.  LaSOT: A High-Quality Benchmark for Large-Scale Single Object Tracking , 2018, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[33]  George Papandreou,et al.  Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation , 2018, ECCV.

[34]  Qiang Qiu,et al.  Weakly Supervised Instance Segmentation Using Class Peak Response , 2018, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[35]  K.-K. Maninis,et al.  Video Object Segmentation without Temporal Information , 2017, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[36]  Jimmy Ba,et al.  Adam: A Method for Stochastic Optimization , 2014, ICLR.

[37]  Bernt Schiele,et al.  Simple Does It: Weakly Supervised Instance and Semantic Segmentation , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[38]  Jitendra Malik,et al.  ShapeMask: Learning to Segment Novel Objects by Refining Shape Priors , 2019, 2019 IEEE/CVF International Conference on Computer Vision (ICCV).

[39]  Philip H. S. Torr,et al.  Meta-Learning Deep Visual Words for Fast Video Object Segmentation , 2018, 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

[40]  Michael Felsberg,et al.  Learning Fast and Robust Target Models for Video Object Segmentation , 2020, 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[41]  Wenyu Liu,et al.  Weakly-Supervised Semantic Segmentation Network with Deep Seeded Region Growing , 2018, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[42]  Xiaoxiao Li,et al.  Video Object Segmentation with Joint Re-identification and Attention-Aware Mask Propagation , 2018, ECCV.

[43]  Gérard G. Medioni,et al.  Detecting and tracking moving objects for video surveillance , 1999, Proceedings. 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No PR00149).

[44]  Luc Van Gool,et al.  Deep Extreme Cut: From Extreme Points to Object Segmentation , 2017, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[45]  Xin Zhao,et al.  GOT-10k: A Large High-Diversity Benchmark for Generic Object Tracking in the Wild , 2018, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[46]  Matthew B. Blaschko,et al.  The Lovasz-Softmax Loss: A Tractable Surrogate for the Optimization of the Intersection-Over-Union Measure in Neural Networks , 2017, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[47]  Jonathan T. Barron,et al.  Multiscale Combinatorial Grouping for Image Segmentation and Object Proposal Generation , 2015, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[48]  Ning Xu,et al.  YouTube-VOS: A Large-Scale Video Object Segmentation Benchmark , 2018, ArXiv.

[49]  Bastian Leibe,et al.  Online Adaptation of Convolutional Neural Networks for Video Object Segmentation , 2017, BMVC.

[50]  Wei Wu,et al.  SiamRPN++: Evolution of Siamese Visual Tracking With Very Deep Networks , 2018, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[51]  L. Gool,et al.  Know Your Surroundings: Exploiting Scene Information for Object Tracking , 2020, ECCV.

[52]  Ronan Collobert,et al.  From image-level to pixel-level labeling with Convolutional Networks , 2014, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[53]  Bastian Leibe,et al.  PReMVOS: Proposal-generation, Refinement and Merging for Video Object Segmentation , 2018, ACCV.

[54]  Jian Sun,et al.  Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification , 2015, 2015 IEEE International Conference on Computer Vision (ICCV).

[55]  Luc Van Gool,et al.  Blazingly Fast Video Object Segmentation with Pixel-Wise Metric Learning , 2018, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[56]  Fei-Fei Li,et al.  What's the Point: Semantic Segmentation with Point Supervision , 2015, ECCV.

[57]  George Papandreou,et al.  Weakly-and Semi-Supervised Learning of a Deep Convolutional Network for Semantic Image Segmentation , 2015, 2015 IEEE International Conference on Computer Vision (ICCV).

[58]  Suha Kwak,et al.  Learning Pixel-Level Semantic Affinity with Image-Level Supervision for Weakly Supervised Semantic Segmentation , 2018, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[59]  Michael S. Bernstein,et al.  ImageNet Large Scale Visual Recognition Challenge , 2014, International Journal of Computer Vision.

[60]  Kalyan Sunkavalli,et al.  Fast Video Object Segmentation by Reference-Guided Mask Propagation , 2018, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[61]  Ce Liu,et al.  Unsupervised Joint Object Discovery and Segmentation in Internet Images , 2013, 2013 IEEE Conference on Computer Vision and Pattern Recognition.

[62]  Jian Sun,et al.  BoxSup: Exploiting Bounding Boxes to Supervise Convolutional Networks for Semantic Segmentation , 2015, 2015 IEEE International Conference on Computer Vision (ICCV).

[63]  Andrew Blake,et al.  "GrabCut" , 2004, ACM Trans. Graph..

[64]  Yung-Yu Chuang,et al.  Weakly Supervised Instance Segmentation using the Bounding Box Tightness Prior , 2019, NeurIPS.

[65]  Wei Lu,et al.  RPT: Learning Point Set Representation for Siamese Visual Tracking , 2020, ECCV Workshops.

[66]  Subhransu Maji,et al.  Meta-Learning With Differentiable Convex Optimization , 2019, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).