Minimising Testing in Genetic Programming

The cost of optimisation can be reduced by evaluating candidate designs on only a fraction of all possible use cases. We show how genetic programming (GP) can avoid overfitting and evolve general solutions from fitness test suites as small as just one dynamic training case. Search effort can be greatly reduced.

[1]  Riccardo Poli,et al.  Sub-machine-code genetic programming , 1999 .

[2]  Riccardo Poli,et al.  The evolution of size and shape , 1999 .

[3]  Hod Lipson,et al.  Automated reverse engineering of nonlinear dynamical systems , 2007, Proceedings of the National Academy of Sciences.

[4]  Brian J. Ross,et al.  Probabilistic Pattern Matching and the Evolution of Stochastic Regular Expressions , 2000, Applied Intelligence.

[5]  Riccardo Poli,et al.  A Field Guide to Genetic Programming , 2008 .

[6]  W. Daniel Hillis,et al.  Co-evolving parasites improve simulated evolution as an optimization procedure , 1990 .

[7]  James A. Foster,et al.  Review: Discipulus: A Commercial Genetic Programming System , 2001, Genetic Programming and Evolvable Machines.

[8]  Tatsuya Motoki,et al.  Calculating the Expected Loss of Diversity of Selection Schemes , 2002, Evolutionary Computation.

[9]  Zbigniew Michalewicz,et al.  Evolutionary Computation 1 , 2018 .

[10]  ForrestStephanie,et al.  Searching for diverse, cooperative populations with genetic algorithms , 1993 .

[11]  S. Crawford,et al.  Volume 1 , 2012, Journal of Diabetes Investigation.

[12]  Alan S. Perelson,et al.  Searching for Diverse, Cooperative Populations with Genetic Algorithms , 1993, Evolutionary Computation.

[13]  Peter Ross,et al.  Dynamic Training Subset Selection for Supervised Learning in Genetic Programming , 1994, PPSN.

[14]  Riccardo Poli,et al.  Genetic Programming: An Introduction and Tutorial, with a Survey of Techniques and Applications , 2008, Computational Intelligence: A Compendium.

[15]  William B. Langdon,et al.  A Many Threaded CUDA Interpreter for Genetic Programming , 2010, EuroGP.

[16]  Franz Oppacher,et al.  An Analysis of Koza's Computational Effort Statistic for Genetic Programming , 2002, EuroGP.

[17]  W. B. Langdon,et al.  Genetic Programming and Data Structures , 1998, The Springer International Series in Engineering and Computer Science.

[18]  Brian J. Ross The Effects of Randomly Sampled Training Data on Program Evolution , 2000, GECCO.

[19]  J. Davenport Editor , 1960 .

[20]  Peter Nordin,et al.  Genetic programming - An Introduction: On the Automatic Evolution of Computer Programs and Its Applications , 1998 .

[21]  Melanie Mitchell,et al.  Relative Building-Block Fitness and the Building Block Hypothesis , 1992, FOGA.

[22]  Eduardo Sontag VC dimension of neural networks , 1998 .

[23]  S. B. Atienza-Samols,et al.  With Contributions by , 1978 .

[24]  William Feller,et al.  An Introduction to Probability Theory and Its Applications , 1951 .

[25]  Riccardo Poli,et al.  Fitness Causes Bloat , 1998 .

[26]  J. van Leeuwen,et al.  Theoretical Computer Science , 2003, Lecture Notes in Computer Science.

[27]  William B. Langdon,et al.  Generalisation in genetic programming , 2011, GECCO.

[28]  James P. Crutchfield,et al.  Statistical Dynamics of the Royal Road Genetic Algorithm , 1999, Theor. Comput. Sci..

[29]  Astro Teller,et al.  Automatically Choosing the Number of Fitness Cases: The Rational Allocation of Trials , 1997 .

[30]  Leonardo Vanneschi,et al.  How Statistics Can Help In Limiting The Number Of Fitness Cases In Genetic Programming , 2002, GECCO.

[31]  Alex A. Freitas,et al.  Evolutionary Computation , 2002 .