Fronts in passive scalar turbulence

The evolution of scalar fields transported by turbulent flow is characterized by the presence of fronts, which rule the small-scale statistics of scalar fluctuations. With the aid of numerical simulations, it is shown that: Isotropy is not recovered, in the classical sense, at small scales; scaling exponents are universal with respect to the scalar injection mechanisms; high-order exponents saturate to a constant value; nonmature fronts dominate the statistics of intense fluctuations. Results on the statistics inside the “plateaux,” where fluctuations are weak, are also presented. Finally, we analyze the statistics of scalar dissipation and scalar fluxes.

[1]  Jayesh,et al.  Probability distribution of a passive scalar in grid-generated turbulence. , 1991, Physical review letters.

[2]  Shiyi Chen,et al.  Simulations of a randomly advected passive scalar field , 1998 .

[3]  L. Lipatov Calculation of the Gell-Mann--Low function in scalar theories with strong nonlinearity , 1976 .

[4]  R. Kraichnan,et al.  Anomalous scaling of a randomly advected passive scalar. , 1994, Physical review letters.

[5]  J. F. Cornwell Group theory in physics , 1984 .

[6]  J. Zinn-Justin Quantum Field Theory and Critical Phenomena , 2002 .

[7]  M. Chertkov INSTANTON FOR RANDOM ADVECTION , 1997 .

[8]  A. Pumir,et al.  Anomalous scaling behaviour of a passive scalar in the presence of a mean gradient , 1996 .

[9]  Katepalli R. Sreenivasan,et al.  Extraction of Anisotropic Contributions in Turbulent Flows , 1998, chao-dyn/9804040.

[10]  Loran Ts. Adzhemyan,et al.  Renormalization group, operator product expansion, and anomalous scaling in a model of advected passive scalar , 1998 .

[11]  Eric D. Siggia,et al.  Scalar turbulence , 2000, Nature.

[12]  Lebedev,et al.  Statistics of a passive scalar advected by a large-scale two-dimensional velocity field: Analytic solution. , 1994, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[13]  V. Yakhot PASSIVE SCALAR ADVECTED BY A RAPIDLY CHANGING RANDOM VELOCITY FIELD : PROBABILITY DENSITY OF SCALAR DIFFERENCES , 1997 .

[14]  Vergassola,et al.  Universality and saturation of intermittency in passive scalar turbulence , 2000, Physical review letters.

[15]  Luca Biferale,et al.  Disentangling Scaling Properties in Anisotropic and Inhomogeneous Turbulence. , 1999 .

[16]  A. Mazzino,et al.  STRUCTURES AND INTERMITTENCY IN A PASSIVE SCALAR MODEL , 1997, chao-dyn/9702014.

[17]  Katepalli R. Sreenivasan,et al.  On local isotropy of passive scalars in turbulent shear flows , 1991, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.

[18]  E. Siggia,et al.  Anomalous scaling of a passive scalar in turbulent flow , 1995 .

[19]  Smith,et al.  Bose condensation and small-scale structure generation in a random force driven 2D turbulence. , 1993, Physical review letters.

[20]  M. Gregg Microstructure Patches in the Thermocline , 1980 .

[21]  Procaccia,et al.  Anomalous scaling in the anisotropic sectors of the kraichnan model of passive scalar advection , 1999, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[22]  L. Lipatov,et al.  Divergence of the Perturbation Theory Series and the Quasiclassical Theory , 1976 .

[23]  Earl E. Gossard,et al.  Finestructure of Elevated Stable Layers Observed by Sounder and In Situ Tower Sensors , 1985 .

[24]  U. Frisch,et al.  Lagrangian method for multiple correlations in passive scalar advection , 1998 .

[25]  R. Benzi,et al.  Analytic Calculation of Anomalous Scaling in Random Shell Models for a Passive Scalar , 1997, chao-dyn/9702005.

[26]  Antonov,et al.  Persistence of small-scale anisotropies and anomalous scaling in a model of magnetohydrodynamics turbulence , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[27]  J. Weiss The dynamics of entropy transfer in two-dimensional hydrodynamics , 1991 .

[28]  Zellman Warhaft,et al.  On passive scalar derivative statistics in grid turbulence , 1994 .

[29]  J. Lumley,et al.  A First Course in Turbulence , 1972 .

[30]  Antonov,et al.  Manifestation of anisotropy persistence in the hierarchies of magnetohydrodynamical scaling exponents , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[31]  R. Kraichnan Inertial Ranges in Two‐Dimensional Turbulence , 1967 .

[32]  Vergassola Anomalous scaling for passively advected magnetic fields. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[33]  V. Yakhot Two-dimensional turbulence in the inverse cascade range. , 1999, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[34]  Alain Pumir,et al.  A numerical study of the mixing of a passive scalar in three dimensions in the presence of a mean gradient , 1994 .

[35]  U. Frisch,et al.  Transverse velocity increments in turbulent flow using the RELIEF technique , 1997, Journal of Fluid Mechanics.

[36]  Gawedzki,et al.  Anomalous scaling of the passive scalar. , 1995, Physical review letters.

[37]  Shraiman,et al.  Exponential tails and random advection. , 1991, Physical review letters.

[38]  E. Siggia,et al.  Erratum: ‘‘Turbulent mixing of a passive scalar’’ [Phys. Fluids 6, 1820 (1994)] , 1995 .

[39]  Eric D. Siggia,et al.  Turbulent Mixing of a Passive Scalar , 1994 .

[40]  Shraiman,et al.  Lagrangian path integrals and fluctuations in random flow. , 1994, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[41]  P. Mestayer Local isotropy and anisotropy in a high-Reynolds-number turbulent boundary layer , 1982, Journal of Fluid Mechanics.

[42]  U. Frisch,et al.  Intermittency in Passive Scalar Advection , 1998, cond-mat/9802192.

[43]  Shraiman,et al.  Persistent small scale anisotropy in homogeneous shear flows. , 1995, Physical review letters.

[44]  Normal and anomalous scaling of the fourth-order correlation function of a randomly advected passive scalar. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[45]  Laurent Mydlarski,et al.  Passive scalar statistics in high-Péclet-number grid turbulence , 1998, Journal of Fluid Mechanics.

[46]  Z. Warhaft Passive Scalars in Turbulent Flows , 2000 .

[47]  R. Lueck Turbulent Mixing at the Pacific Subtropical Front , 1988 .

[48]  Robert H. Kraichnan,et al.  Small‐Scale Structure of a Scalar Field Convected by Turbulence , 1968 .

[49]  Andrew J. Majda,et al.  Formation of strong fronts in the 2-D quasigeostrophic thermal active scalar , 1994 .

[50]  A. Fairhall,et al.  Direct Numerical Simulations of the Kraichnan Model : Scaling Exponents and Fusion Rules , 1997, chao-dyn/9707003.

[51]  Robert H. Kraichnan,et al.  Passive Scalar: Scaling Exponents and Realizability , 1996, chao-dyn/9611007.

[52]  S. Pope,et al.  Stationary probability density functions: An exact result , 1993 .

[53]  P. Tabeling,et al.  Intermittency in the two-dimensional inverse cascade of energy: Experimental observations , 1998 .

[54]  K. Sreenivasan,et al.  Skewness of temperature derivatives in turbulent shear flows , 1977 .

[55]  J. Lumley Similarity and the Turbulent Energy Spectrum , 1967 .

[56]  J. Pedlosky Geophysical Fluid Dynamics , 1979 .

[57]  Jean Vernin,et al.  Direct Evidence of “Sheets” in the Atmospheric Temperature Field , 1994 .

[58]  M. Vergassola,et al.  Inverse energy cascade in two-dimensional turbulence: deviations from gaussian behavior , 1999, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[59]  S. Ciliberto,et al.  Scaling laws for the turbulent mixing of a passive scalar in the wake of a cylinder , 1999 .

[60]  E. Balkovsky,et al.  INSTANTON FOR THE KRAICHNAN PASSIVE SCALAR PROBLEM , 1998, chao-dyn/9803018.