P^(NP[O(log n)]) and Sparse Turing-Complete Sets for NP

PNP[O(log n)] is the class of languages recognizable by deterministic polynomial time machines that make O(log n) queries to an oracle for NP. Our main result is that if there exists a sparse set S ϵ NP such that co-NP ( NPs, then the polynomial hierarchy (PH) is contained in PNP[O(log n)]. Thus if there exists a sparse ⩾PT-complete set for NP, PH ( PNP[O(log n)]. We show that this collapse is optimal by showing for any function f (n) that is o(log n), there exists a relativized world where NP has a sparse ⩾PT-complete set and yet PNP[O(log n)] (/ PNP[f(n)]. We also discuss complete problems for PNP[O(log n)] and show languages related to the optimum solution size of Clique and K-SAT are ⩾Pm-complete. In related research, we investigate when the class of languages ⩾Pm-reducible to a set C equals PC[O(log n)]. We obtain results that allow us to prove that if DP is closed under complementation, then PNP[O(log n)] = DP.

[1]  Hans Heller,et al.  On Relativized Exponential and Probabilistic Complexity Classes , 1986, Inf. Control..

[2]  C. Papadimitriou,et al.  Two remarks on the power of counting , 1983 .

[3]  Timothy J. Long,et al.  A Note on Sparse Oracles for NP , 1982, J. Comput. Syst. Sci..

[4]  Chee-Keng Yap,et al.  Some Consequences of Non-Uniform Conditions on Uniform Classes , 1983, Theor. Comput. Sci..

[5]  Christos H. Papadimitriou,et al.  On the complexity of unique solutions , 1982, 23rd Annual Symposium on Foundations of Computer Science (sfcs 1982).

[6]  Christopher B. Wilson Relativized circuit complexity , 1983, 24th Annual Symposium on Foundations of Computer Science (sfcs 1983).

[7]  Mark W. Krentel The Complexity of Optimization Problems , 1988, J. Comput. Syst. Sci..

[8]  Stephen R. Mahaney Sparse Complete Sets of NP: Solution of a Conjecture of Berman and Hartmanis , 1982, J. Comput. Syst. Sci..

[9]  Larry Joseph Stockmeyer,et al.  The complexity of decision problems in automata theory and logic , 1974 .

[10]  Juris Hartmanis,et al.  The Boolean Hierarchy I: Structural Properties , 1988, SIAM J. Comput..

[11]  Lane A. Hemachandra Can P and NP Manufacture Randomness , 1986 .

[12]  L. Hemachandra The strong exponential hierarchy collapses , 1987, STOC 1987.

[13]  R.E. Ladner,et al.  A Comparison of Polynomial Time Reducibilities , 1975, Theor. Comput. Sci..

[14]  Mihalis Yannakakis,et al.  The complexity of facets (and some facets of complexity) , 1982, STOC '82.

[15]  Andreas Blass,et al.  On the Unique Satisfiability Problem , 1982, Inf. Control..

[16]  Samuel R. Buss,et al.  On truth-table reducibility to SAT and the difference hierarchy over NP , 1988, [1988] Proceedings. Structure in Complexity Theory Third Annual Conference.

[17]  Jeffrey D. Ullman,et al.  Introduction to Automata Theory, Languages and Computation , 1979 .

[18]  Klaus W. Wagner,et al.  More Complicated Questions About Maxima and Minima, and Some Closures of NP , 1986, Theor. Comput. Sci..

[19]  Jim Kadin The Polynomial Time Hierarchy Collapses if the Boolean Hierarchy Collapses , 1988, SIAM J. Comput..

[20]  Larry J. Stockmeyer,et al.  The Polynomial-Time Hierarchy , 1976, Theor. Comput. Sci..

[21]  Juris Hartmanis,et al.  On Isomorphisms and Density of NP and Other Complete Sets , 1977, SIAM J. Comput..

[22]  Neil Immerman,et al.  Relativizing Relativized Computations , 1989, Theor. Comput. Sci..