A Single-Layer Dual-Band Reflectarray Cell for 5G Communication Systems

A single-layer dual-band reflectarray cell is proposed in this work for future 5G systems. A reflectarray unit cell operating at 28/38 GHz is designed by adopting two pairs of miniaturized fractal patches, offering low losses (<0.7 dB) and almost full-phase ranges (≅320°) at both operating frequencies. The proposed configuration allows to achieve very small interelement spacings and negligible mutual coupling effects between the two bands, thus assuring an independent phase-tuning mechanism at both desired frequency bands. The designed compact cell is successfully adopted to demonstrate reflectarrays’ abilities in achieving fixed scanned-beam and/or multibeam patterns, under the dual-band operation mode. Full-wave numerical validations, performed on the synthesized reflectarray structures, confirm the effectiveness of the designed dual-band configuration in achieving independent radiation patterns and quite good bandwidths, at the two designed frequencies. Thanks to its compactness and versatility in achieving both frequency diversity and multibeam/scanned-beam radiation patterns, the proposed unit cell is appealing for future 5G applications.

[1]  J. Encinar,et al.  Reflectarray antennas , 2007, Developments in Antenna Analysis and Design: Volume 2.

[2]  D. Pozar,et al.  Design of millimeter wave microstrip reflectarrays , 1997 .

[3]  I. Venneri,et al.  60 GHz microstrip reflectarray on a benzocyclobutene dielectric substrate , 2011 .

[4]  Constantine A. Balanis,et al.  Antenna Theory: Analysis and Design , 1982 .

[5]  Theodore S. Rappaport,et al.  Overview of Millimeter Wave Communications for Fifth-Generation (5G) Wireless Networks—With a Focus on Propagation Models , 2017, IEEE Transactions on Antennas and Propagation.

[6]  Giuseppe Di Massa,et al.  Benzocyclobutene as Substrate Material for Planar Millimeter-Wave Structures: Dielectric Characterization and Application , 2009 .

[7]  Antonio Raffo,et al.  Radial-Shaped Single Varactor-Tuned Phasing Line for Active Reflectarrays , 2016, IEEE Transactions on Antennas and Propagation.

[8]  Shiwen He,et al.  Multibeam Antenna Technologies for 5G Wireless Communications , 2017, IEEE Transactions on Antennas and Propagation.

[9]  W. Marsden I and J , 2012 .

[10]  Yu Pan,et al.  A X/Ku dual‐band reflectarray design with cosecant squared shaped beam , 2014 .

[11]  Zahra Atlasbaf,et al.  A New Broadband Single-Layer Dual-Band Reflectarray Antenna in X- and Ku-Bands , 2015, IEEE Antennas and Wireless Propagation Letters.

[12]  Osama M. Haraz,et al.  Dense Dielectric Patch Array Antenna With Improved Radiation Characteristics Using EBG Ground Structure and Dielectric Superstrate for Future 5G Cellular Networks , 2014, IEEE Access.

[13]  Herve Legay,et al.  Dual-band Ka/X reflectarray with broadband loop elements , 2010 .

[14]  G. Massa,et al.  Bandwidth performances of reconfigurable reflectarrays: State of art and future challenges , 2018 .

[15]  Zahra Atlasbaf,et al.  Design and Implementation of a Dual-Band Single Layer Reflectarray in X and K Bands , 2014, IEEE Transactions on Antennas and Propagation.

[16]  Xun Gong,et al.  Miniaturized Reflectarray Unit Cell Using Fractal-Shaped Patch-Slot Configuration , 2012, IEEE Antennas and Wireless Propagation Letters.

[17]  Sean Victor Hum,et al.  Reconfigurable Reflectarrays and Array Lenses for Dynamic Antenna Beam Control: A Review , 2013, IEEE Transactions on Antennas and Propagation.

[18]  Xiu Yin Zhang,et al.  Single-Layer Dual-Band Reflectarray With Single Linear Polarization , 2014 .

[19]  A. Borgia,et al.  Fractal Reflectarray Antennas: State of Art and New Opportunities , 2016 .

[20]  Marek E. Bialkowski,et al.  Fractal unit cells of increased phasing range and low slopes for single-layer microstrip reflectarrays , 2011 .

[21]  Theodore S. Rappaport,et al.  Millimeter Wave Mobile Communications for 5G Cellular: It Will Work! , 2013, IEEE Access.

[22]  Guang Liu,et al.  A broadband KU‐band microstrip reflectarray antenna using single‐layer fractal elements , 2016 .

[24]  S. Costanzo,et al.  Miniaturized Fractal Reflectarray Element Using Fixed-Size Patch , 2014, IEEE Antennas and Wireless Propagation Letters.

[25]  Waleed Tariq Sethi,et al.  Demonstration of Millimeter Wave 5G Setup Employing High-Gain Vivaldi Array , 2018 .

[26]  Muhammad Ramlee Kamarudin,et al.  A Review of Wideband Reflectarray Antennas for 5G Communication Systems , 2017, IEEE Access.

[27]  S. Costanzo,et al.  Design and Validation of a Reconfigurable Single Varactor-Tuned Reflectarray , 2013, IEEE Transactions on Antennas and Propagation.