On cutting-plane proofs in combinatorial optimization

Abstract Gomory's cutting-plane technique can be viewed as a recursive procedure for proving the validity of linear inequalities over the set of all integer vectors in a prescribed polyhedron. The number of rounds of cutting planes needed to obtain all valid linear inequalities is known as the rank of the polyhedron. We prove that polyhedra featured in popular formulations of the stable-set problem, the set-covering problem, the set-partitioning problem, the knapsack problem, the bipartite-subgraph problem, the maximum-cut problem, the acyclic-subdigraph problem, the asymmetric traveling-salesman problem, and the traveling-salesman problem have arbitrarily high rank. In particular, we prove conjectures of Barahona, Grotschel, and Mahjoub; Chvatal; Grotschel and Pulleyblank; and Junger.

[1]  Martin Grötschel,et al.  On the structure of the monotone asymmetric travelling salesman polytope I: hypohamiltonian facets , 1981, Discret. Math..

[2]  P. Macdonald Combinatorial Programming: Methods and Applications , 1976 .

[3]  Antonio Sassano,et al.  On the facial structure of the set covering polytope , 1989, Math. Program..

[4]  Martin Grötschel,et al.  Facets of the Bipartite Subgraph Polytope , 1985, Math. Oper. Res..

[5]  Gerhard Reinelt,et al.  On the acyclic subgraph polytope , 1985, Math. Program..

[6]  J. P. Uhry,et al.  Transformations which Preserve Perfectness and H-Perfectness of Graphs , 1982 .

[7]  Bert Gerards Testing the Odd Bicycle Wheel Inequalities for the Bipartite Subgraph Polytope , 1985, Math. Oper. Res..

[8]  Laurence A. Wolsey,et al.  Faces for a linear inequality in 0–1 variables , 1975, Math. Program..

[9]  Peter L. Hammer,et al.  Computing low-capacity 0–1 knapsack polytopes , 1982, Z. Oper. Research.

[10]  Ellis L. Johnson Subadditive Lifting Methods for Partitioning and Knapsack Problems , 1980, J. Algorithms.

[11]  Joel Spencer Optimally ranking unrankable tournaments , 1980 .

[12]  Alexander Schrijver,et al.  On Cutting Planes , 1980 .

[13]  Martin Grötschel,et al.  On the symmetric travelling salesman problem II: Lifting theorems and facets , 1979, Math. Program..

[14]  Peter L. Hammer,et al.  Facet of regular 0–1 polytopes , 1975, Math. Program..

[15]  Leslie E. Trotter,et al.  A class of facet producing graphs for vertex packing polyhedra , 1975, Discret. Math..

[16]  William J. Cook,et al.  On the complexity of cutting-plane proofs , 1987, Discret. Appl. Math..

[17]  William J. Cook,et al.  Chvátal closures for mixed integer programming problems , 1990, Math. Program..

[18]  J. R. Walters Studies in Integer Programming , 1978 .

[19]  V. Chvátal Flip-Flops in Hypohamiltonian Graphs , 1973, Canadian mathematical bulletin.

[20]  J. P. Uhry,et al.  A class of h-perfect graphs , 1984, Discret. Math..

[21]  Egon Balas,et al.  On the set covering polytope: I. All the facets with coefficients in {0, 1, 2} , 1986, Math. Program..

[22]  Bert Gerards,et al.  Matrices with the edmonds—Johnson property , 1986, Comb..

[23]  Egon Balas,et al.  Some Valid Inequalities for the Set Partitioning Problem , 1977 .

[24]  William R. Pulleyblank,et al.  Clique Tree Inequalities and the Symmetric Travelling Salesman Problem , 1986, Math. Oper. Res..

[25]  P. Erdös On circuits and subgraphs of chromatic graphs , 1962 .

[26]  Mouloud Boulala,et al.  Polytope des independants d'un graphe serie-parallele , 1979, Discret. Math..

[27]  Ali Ridha Mahjoub,et al.  On the cut polytope , 1986, Math. Program..

[28]  Wenceslas Fernandez de la Vega,et al.  On the maximum cardinality of a consistent set of arcs in a random tournament , 1983, J. Comb. Theory, Ser. B.

[29]  S. Szarek On the best constants in the Khinchin inequality , 1976 .

[30]  Martin Grötschel,et al.  On the symmetric travelling salesman problem I: Inequalities , 1979, Math. Program..

[31]  Vasek Chvátal,et al.  Edmonds polytopes and a hierarchy of combinatorial problems , 1973, Discret. Math..

[32]  Leslie E. Trotter,et al.  On stable set polyhedra for K1, 3-free graphs , 1981, J. Comb. Theory, Ser. B.

[33]  David S. Johnson,et al.  Two Results Concerning Multicoloring , 1978 .

[34]  Vasek Chvátal,et al.  Edmonds polytopes and weakly hamiltonian graphs , 1973, Math. Program..

[35]  Egon Balas,et al.  Facets of the knapsack polytope , 1975, Math. Program..

[36]  E. Balas,et al.  Facets of the Knapsack Polytope From Minimal Covers , 1978 .

[37]  V. Chvátal On certain polytopes associated with graphs , 1975 .

[38]  Ralph E. Gomory,et al.  An algorithm for integer solutions to linear programs , 1958 .

[39]  Joel Spencer Optimal ranking of tournaments , 1971, Networks.

[40]  Martin Grötschel,et al.  On the structure of the monotone asymmetric travelling salesman polytope II: Hypotraceable facets , 1981 .

[41]  Manfred W. Padberg Technical Note - A Note on Zero-One Programming , 1975, Oper. Res..

[42]  Gérard Cornuéjols,et al.  On the 0, 1 facets of the set covering polytope , 1989, Math. Program..

[43]  Manfred W. Padberg,et al.  On the facial structure of set packing polyhedra , 1973, Math. Program..

[44]  Mark Evan Hartmann,et al.  Cutting planes and the complexity of the integer hull , 1989 .

[45]  L. A. Wolsey,et al.  Further facet generating procedures for vertex packing polytopes , 1976, Math. Program..

[46]  Martin Grötschel,et al.  Partial linear characterizations of the asymmetric travelling salesman polytope , 1975, Math. Program..

[47]  William J. Cook,et al.  Sensitivity theorems in integer linear programming , 1986, Math. Program..

[48]  P. Erdös,et al.  Graph Theory and Probability , 1959 .

[49]  Egon Balas The Asymmetric Assignment Problem and Some New Facets of the Traveling Salesman Polytope on a Directed Graph , 1989, SIAM J. Discret. Math..

[50]  E. Balas Cutting planes from conditional bounds: A new approach to set covering , 1980 .

[51]  M. Padberg On the Complexity of Set Packing Polyhedra , 1977 .

[52]  Leslie E. Trotter,et al.  Properties of vertex packing and independence system polyhedra , 1974, Math. Program..