Extensions of Gaussian Processes for Ranking : Semi-supervised and Active Learning

Unlabelled examples in supervised learning tasks can be optimally exploited using semi-supervised methods and active learning. We focus on ranking learning from pairwise instance preference to discuss these important extensions, semi-supervised learning and active learning, in the probabilistic framework of Gaussian processes. Numerical experiments demonstrate the capacities of these techniques.

[1]  L. Thurstone,et al.  A low of comparative judgement , 1927 .

[2]  David J. C. MacKay,et al.  Information-Based Objective Functions for Active Data Selection , 1992, Neural Computation.

[3]  David A. Cohn,et al.  Active Learning with Statistical Models , 1996, NIPS.

[4]  Carl E. Rasmussen,et al.  In Advances in Neural Information Processing Systems , 2011 .

[5]  K. Obermayer,et al.  Learning Preference Relations for Information Retrieval , 1998 .

[6]  Tom Minka,et al.  A family of algorithms for approximate Bayesian inference , 2001 .

[7]  Bernhard Schölkopf,et al.  Cluster Kernels for Semi-Supervised Learning , 2002, NIPS.

[8]  L. Csató Gaussian processes:iterative sparse approximations , 2002 .

[9]  Dan Roth,et al.  Constraint Classification: A New Approach to Multiclass Classification , 2002, ALT.

[10]  Neil D. Lawrence,et al.  Fast Sparse Gaussian Process Methods: The Informative Vector Machine , 2002, NIPS.

[11]  Zoubin Ghahramani,et al.  Combining active learning and semi-supervised learning using Gaussian fields and harmonic functions , 2003, ICML 2003.

[12]  Bernhard Schölkopf,et al.  Learning with Local and Global Consistency , 2003, NIPS.

[13]  Yoram Singer,et al.  Log-Linear Models for Label Ranking , 2003, NIPS.

[14]  Ran El-Yaniv,et al.  Online Choice of Active Learning Algorithms , 2003, J. Mach. Learn. Res..

[15]  Neil D. Lawrence,et al.  Semi-supervised Learning via Gaussian Processes , 2004, NIPS.

[16]  Alessandro Sperduti,et al.  Learning Preferences for Multiclass Problems , 2004, NIPS.

[17]  Mikhail Belkin,et al.  Manifold Regularization : A Geometric Framework for Learning from Examples , 2004 .

[18]  Wei Chu,et al.  Preference learning with Gaussian processes , 2005, ICML.

[19]  Gregory N. Hullender,et al.  Learning to rank using gradient descent , 2005, ICML.

[20]  Eyke Hüllermeier,et al.  Preference Learning , 2005, Künstliche Intell..

[21]  Mikhail Belkin,et al.  Beyond the point cloud: from transductive to semi-supervised learning , 2005, ICML.