Efficient computation of regular differential systems by change of rankings using Kähler differentials
暂无分享,去创建一个
[1] P. Olver. Equivalence, Invariants, and Symmetry: References , 1995 .
[2] Daniel Lazard,et al. Solving Zero-Dimensional Algebraic Systems , 1992, J. Symb. Comput..
[3] François Boulier,et al. Étude et implantation de quelques algorithmes en algèbre différentielle. (Study and implementation of some algorithms in differential algebra) , 1994 .
[4] David H. Bailey,et al. Analysis of PSLQ, an integer relation finding algorithm , 1999, Math. Comput..
[5] François Boulier,et al. Representation for the radical of a finitely generated differential ideal , 1995, ISSAC '95.
[6] Manuel Bronstein,et al. On Solutions of Linear Ordinary Difference Equations in their Coefficient Field , 2000, J. Symb. Comput..
[7] Donal O'Shea,et al. Ideals, varieties, and algorithms - an introduction to computational algebraic geometry and commutative algebra (2. ed.) , 1997, Undergraduate texts in mathematics.
[8] D. Eisenbud. Commutative Algebra: with a View Toward Algebraic Geometry , 1995 .
[9] P. Aubry,et al. Ensembles triangulaires de polynomes et resolution de systemes algebriques. Implantation en axiom , 1999 .
[10] Marc Moreno Maza,et al. Calculs de pgcd au-dessus des tours d'extensions simples et resolution des systemes d'equations algebriques , 1997 .
[11] François Lemaire,et al. Computing canonical representatives of regular differential ideals , 2000, ISSAC.