$n$ -Dimensional Discrete Cat Map Generation Using Laplace Expansions

Different from existing methods that use matrix multiplications and have high computation complexity, this paper proposes an efficient generation method of n-dimensional (nD) Cat maps using Laplace expansions. New parameters are also introduced to control the spatial configurations of the nD Cat matrix. Thus, the proposed method provides an efficient way to mix dynamics of all dimensions at one time. To investigate its implementations and applications, we further introduce a fast implementation algorithm of the proposed method with time complexity O(n4) and a pseudorandom number generator using the Cat map generated by the proposed method. The experimental results show that, compared with existing generation methods, the proposed method has a larger parameter space and simpler algorithm complexity, generates nD Cat matrices with a lower inner correlation, and thus yields more random and unpredictable outputs of nD Cat maps.

[1]  Ioannis Antoniou,et al.  Generalized spectral decomposition and intrinsic irreversibility of the Arnold Cat Map , 1997 .

[2]  W.K.S. Tang,et al.  A chaos-based secure voice communication system , 2005, 2005 IEEE International Conference on Industrial Technology.

[3]  Angelo Vulpiani,et al.  Properties making a chaotic system a good pseudo random number generator. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[4]  H. Stöckmann,et al.  Quantum Chaos: An Introduction , 1999 .

[5]  Yicong Zhou,et al.  Discrete Wheel-Switching Chaotic System and Applications , 2014, IEEE Transactions on Circuits and Systems I: Regular Papers.

[6]  Iwao Sasase,et al.  A Secret Key Cryptosystem by Iterating a Chaotic Map , 1991, EUROCRYPT.

[7]  M. Saraceno,et al.  Quantization of multidimensional cat maps , 1999, chao-dyn/9904042.

[8]  X. Liao,et al.  One-way Hash function construction based on the chaotic map with changeable-parameter , 2005 .

[9]  A. Davie,et al.  Improved bound for complexity of matrix multiplication , 2013, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[10]  Huai-Ning Wu,et al.  On Fuzzy Sampled-Data Control of Chaotic Systems Via a Time-Dependent Lyapunov Functional Approach , 2015, IEEE Transactions on Cybernetics.

[11]  Shiguo Lian,et al.  3D Extensions of Some 2D Chaotic Maps and Their Usage in Data Encryption , 2003, 2003 4th International Conference on Control and Automation Proceedings.

[12]  N. Balazs,et al.  On the quantum cat and sawtooth maps—Return to generic behaviour , 1993, chao-dyn/9307005.

[13]  S. Weigert,et al.  Quantum chaos in the configurational quantum cat map. , 1993, Physical review. A, Atomic, molecular, and optical physics.

[14]  Philippe Faure,et al.  A new method to estimate the Kolmogorov entropy from recurrence plots: its application to neuronal signals , 1998 .

[15]  Takashi Kanamaru,et al.  Van der Pol oscillator , 2007, Scholarpedia.

[16]  J. Fridrich Symmetric Ciphers Based on Two-Dimensional Chaotic Maps , 1998 .

[17]  Riccardo Rovatti,et al.  Implementation and Testing of High-Speed CMOS True Random Number Generators Based on Chaotic Systems , 2010, IEEE Transactions on Circuits and Systems I: Regular Papers.

[18]  Wen-Wei Lin,et al.  Randomness Enhancement Using Digitalized Modified Logistic Map , 2010, IEEE Transactions on Circuits and Systems II: Express Briefs.

[19]  Yicong Zhou,et al.  Image encryption using a new parametric switching chaotic system , 2013, Signal Process..

[20]  Shih-Yu Li,et al.  Novel Fuzzy Modeling and Synchronization of Chaotic Systems With Multinonlinear Terms by Advanced Ge-Li Fuzzy Model , 2016, IEEE Transactions on Cybernetics.

[21]  Vinod Patidar,et al.  A Pseudo Random Bit Generator Based on Chaotic Logistic Map and its Statistical Testing , 2009, Informatica.

[22]  R. Povinelli,et al.  Analyzing Logistic Map Pseudorandom Number Generators for Periodicity Induced by Finite Precision Floating-Point Representation , 2012 .

[23]  Ljupco Kocarev,et al.  Chaos-Based Cryptography - Theory, Algorithms and Applications , 2011, Chaos-Based Cryptography.

[24]  Meie Shen,et al.  Optimal Selection of Parameters for Nonuniform Embedding of Chaotic Time Series Using Ant Colony Optimization , 2013, IEEE Transactions on Cybernetics.

[25]  Yicong Zhou,et al.  2D Sine Logistic modulation map for image encryption , 2015, Inf. Sci..

[26]  C. Chui,et al.  A symmetric image encryption scheme based on 3D chaotic cat maps , 2004 .

[27]  J. Storer An Introduction to Data Structures and Algorithms , 2002, Birkhäuser Boston.

[28]  D. Lathrop Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry, and Engineering , 2015 .

[29]  Kun Li,et al.  A new chaotic secure communication system , 2003, IEEE Trans. Commun..

[30]  Gonzalo Álvarez,et al.  Some Basic Cryptographic Requirements for Chaos-Based Cryptosystems , 2003, Int. J. Bifurc. Chaos.

[31]  Zhiliang Zhu,et al.  A Novel Image Encryption Algorithm Based on Improved 3D Chaotic Cat Map , 2008, 2008 The 9th International Conference for Young Computer Scientists.

[32]  U. Dieckmann,et al.  POPULATION GROWTH IN SPACE AND TIME: SPATIAL LOGISTIC EQUATIONS , 2003 .

[33]  Sergey P. Kuznetsov,et al.  Disheveled Arnold's cat and the problem of quantum-classic correspondence , 2000 .

[34]  Yicong Zhou,et al.  A new 1D chaotic system for image encryption , 2014, Signal Process..

[35]  Kwok-Wo Wong,et al.  Period Distribution of the Generalized Discrete Arnold Cat Map for $N = 2^{e}$ , 2013, IEEE Transactions on Information Theory.

[36]  Pierre L'Ecuyer,et al.  TestU01: A C library for empirical testing of random number generators , 2006, TOMS.

[37]  Joe Nance,et al.  Periods of the discretized Arnold Cat Map and its extension to n dimensions , 2011, 1111.2984.

[38]  Tian Gong Pan,et al.  A New Algorithm of Image Encryption Based on 3D Arnold Cat , 2011 .

[39]  Henry Leung,et al.  Ergodic chaotic parameter modulation with application to digital image watermarking , 2005, IEEE Transactions on Image Processing.

[40]  G. Gaspari,et al.  The Arnold cat map on prime lattices , 1994 .

[41]  Jia-Chin Lin,et al.  A Fuzzy-Model-Based Chaotic Synchronization and Its Implementation on a Secure Communication System , 2013, IEEE Transactions on Information Forensics and Security.

[42]  A. Wolf,et al.  Determining Lyapunov exponents from a time series , 1985 .

[43]  S. Li,et al.  Cryptographic requirements for chaotic secure communications , 2003, nlin/0311039.

[44]  Sergey Neshveyev On the K-property of quantized Arnold cat maps , 2000 .

[45]  Christopher M. Danforth,et al.  Standing Swells Surveyed Showing Surprisingly Stable Solutions for the Lorenz '96 Model , 2013, Int. J. Bifurc. Chaos.

[46]  L. Shchur,et al.  Periodic orbits of the ensemble of Sinai-Arnold cat maps and pseudorandom number generation. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[47]  Hsien-Keng Chen,et al.  Anti-control of chaos in rigid body motion , 2004 .

[48]  Yicong Zhou,et al.  Cascade Chaotic System With Applications , 2015, IEEE Transactions on Cybernetics.

[49]  J. Gallas,et al.  Structure of the parameter space of the Hénon map. , 1993, Physical review letters.

[50]  Xiaojun Tong,et al.  Image encryption with compound chaotic sequence cipher shifting dynamically , 2008, Image Vis. Comput..

[51]  Shawn D. Pethel,et al.  Control of long-period orbits and arbitrary trajectories in chaotic systems using dynamic limiting. , 2002, Chaos.

[52]  Joseph Ford,et al.  The Arnol'd cat: failure of the correspondence principle , 1991 .