Posttranslational modification of autophagy-related proteins in macroautophagy

Macroautophagy is an intracellular catabolic process involved in the formation of multiple membrane structures ranging from phagophores to autophagosomes and autolysosomes. Dysfunction of macroautophagy is implicated in both physiological and pathological conditions. To date, 38 autophagy-related (ATG) genes have been identified as controlling these complicated membrane dynamics during macroautophagy in yeast; approximately half of these genes are clearly conserved up to human, and there are additional genes whose products function in autophagy in higher eukaryotes that are not found in yeast. The function of the ATG proteins, in particular their ability to interact with a number of macroautophagic regulators, is modulated by posttranslational modifications (PTMs) such as phosphorylation, glycosylation, ubiquitination, acetylation, lipidation, and proteolysis. In this review, we summarize our current knowledge of the role of ATG protein PTMs and their functional relevance in macroautophagy. Unraveling how these PTMs regulate ATG protein function during macroautophagy will not only reveal fundamental mechanistic insights into the regulatory process, but also provide new therapeutic targets for the treatment of autophagy-associated diseases.

[1]  Sebastian Alers,et al.  Ulk1-mediated phosphorylation of AMPK constitutes a negative regulatory feedback loop , 2011, Autophagy.

[2]  D. Klionsky,et al.  SnapShot: Selective Autophagy , 2013, Cell.

[3]  J. Schneider,et al.  Autophagy and Metabolism , 2016 .

[4]  J. Iovanna,et al.  Zymophagy, a Novel Selective Autophagy Pathway Mediated by VMP1-USP9x-p62, Prevents Pancreatic Cell Death*♦ , 2010, The Journal of Biological Chemistry.

[5]  J. Guan,et al.  FIP200, a ULK-interacting protein, is required for autophagosome formation in mammalian cells , 2008, The Journal of cell biology.

[6]  M. Lotze,et al.  The Beclin 1 network regulates autophagy and apoptosis , 2011, Cell Death and Differentiation.

[7]  K. Guan,et al.  Differential Regulation of Distinct Vps34 Complexes by AMPK in Nutrient Stress and Autophagy , 2013, Cell.

[8]  H. Hibshoosh,et al.  Induction of autophagy and inhibition of tumorigenesis by beclin 1 , 1999, Nature.

[9]  J. Broach,et al.  Protein kinase A and Sch9 cooperatively regulate induction of autophagy in Saccharomyces cerevisiae. , 2007, Molecular biology of the cell.

[10]  D. Klionsky,et al.  Phosphatidylinositol-3-Phosphate Clearance Plays a Key Role in Autophagosome Completion , 2012, Current Biology.

[11]  Mauro Piacentini,et al.  The dynamic interaction of AMBRA1 with the dynein motor complex regulates mammalian autophagy , 2010, The Journal of cell biology.

[12]  T. P. Neufeld,et al.  ULK1 induces autophagy by phosphorylating Beclin-1 and activating Vps34 lipid kinase , 2013, Nature Cell Biology.

[13]  D. Sabatini,et al.  mTOR signaling at a glance , 2009, Journal of Cell Science.

[14]  H. Stenmark,et al.  Nedd4-dependent lysine-11-linked polyubiquitination of the tumour suppressor Beclin 1 , 2011, The Biochemical journal.

[15]  B. Viollet,et al.  AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1 , 2011, Nature Cell Biology.

[16]  I. Dikic,et al.  The Three Musketeers of Autophagy: phosphorylation, ubiquitylation and acetylation. , 2011, Trends in cell biology.

[17]  K. Schulze-Osthoff,et al.  Phosphorylation of Atg5 by the Gadd45β–MEKK4-p38 pathway inhibits autophagy , 2012, Cell Death and Differentiation.

[18]  G. Bjørkøy,et al.  p62/SQSTM1 Binds Directly to Atg8/LC3 to Facilitate Degradation of Ubiquitinated Protein Aggregates by Autophagy* , 2007, Journal of Biological Chemistry.

[19]  M. Maiuri,et al.  Cross talk between apoptosis and autophagy by caspase-mediated cleavage of Beclin 1 , 2010, Oncogene.

[20]  Rie Ichikawa,et al.  Atg9 vesicles are an important membrane source during early steps of autophagosome formation , 2012, The Journal of cell biology.

[21]  D. Klionsky,et al.  The Atg1-Atg13 complex regulates Atg9 and Atg23 retrieval transport from the pre-autophagosomal structure. , 2004, Developmental cell.

[22]  Sheila M. Thomas,et al.  AMPK-dependent phosphorylation of ULK1 regulates ATG9 localization , 2012, Autophagy.

[23]  H. Abeliovich,et al.  Role of Membrane Association and Atg14-Dependent Phosphorylation in Beclin-1-Mediated Autophagy , 2013, Molecular and Cellular Biology.

[24]  S. Emr,et al.  A membrane‐associated complex containing the Vps15 protein kinase and the Vps34 PI 3‐kinase is essential for protein sorting to the yeast lysosome‐like vacuole. , 1993, The EMBO journal.

[25]  M. Czaja,et al.  Autophagy regulates lipid metabolism , 2009, Nature.

[26]  Liat Mizrachy,et al.  Differential Interactions Between Beclin 1 and Bcl-2 Family Members , 2007, Autophagy.

[27]  A. Kimchi,et al.  PKD is a kinase of Vps34 that mediates ROS-induced autophagy downstream of DAPk , 2011, Cell Death and Differentiation.

[28]  P. Codogno,et al.  New Targets for Acetylation in Autophagy , 2012, Science Signaling.

[29]  Xuejun Jiang,et al.  SNARE Proteins Are Required for Macroautophagy , 2011, Cell.

[30]  W. Yang,et al.  Spatiotemporally controlled induction of autophagy-mediated lysosome turnover , 2013, Nature Communications.

[31]  A. Goldberg,et al.  FoxO3 controls autophagy in skeletal muscle in vivo. , 2007, Cell metabolism.

[32]  S. Wesselborg,et al.  Role of AMPK-mTOR-Ulk1/2 in the Regulation of Autophagy: Cross Talk, Shortcuts, and Feedbacks , 2011, Molecular and Cellular Biology.

[33]  H. Erdjument-Bromage,et al.  Processing of autophagic protein LC3 by the 20S proteasome , 2010, Autophagy.

[34]  D. Nguyen,et al.  TRAIL induces autophagic protein cleavage through caspase activation in melanoma cell lines under arginine deprivation , 2012, Molecular and Cellular Biochemistry.

[35]  J. Lippincott-Schwartz,et al.  Starvation and ULK1-dependent cycling of mammalian Atg9 between the TGN and endosomes , 2006, Journal of Cell Science.

[36]  H. Ke,et al.  Beclin1 Controls the Levels of p53 by Regulating the Deubiquitination Activity of USP10 and USP13 , 2011, Cell.

[37]  D. Klionsky,et al.  Dynamic regulation of macroautophagy by distinctive ubiquitin-like proteins , 2014, Nature Structural &Molecular Biology.

[38]  A. Matsuura,et al.  Structural and functional analyses of APG5, a gene involved in autophagy in yeast. , 1996, Gene.

[39]  Guang-Chao Chen,et al.  Atg1‐mediated myosin II activation regulates autophagosome formation during starvation‐induced autophagy , 2011, The EMBO journal.

[40]  B. Zhivotovsky,et al.  Proteases in autophagy. , 2012, Biochimica et biophysica acta.

[41]  Wenhua Liu,et al.  Protein kinase C inhibits autophagy and phosphorylates LC3. , 2010, Biochemical and biophysical research communications.

[42]  T. Natsume,et al.  Atg101, a novel mammalian autophagy protein interacting with Atg13 , 2009, Autophagy.

[43]  P. Boya,et al.  Emerging regulation and functions of autophagy , 2013, Nature Cell Biology.

[44]  G. Kroemer,et al.  High-mobility group box 1 is essential for mitochondrial quality control. , 2011, Cell metabolism.

[45]  G. Juhász,et al.  Atg17/FIP200 localizes to perilysosomal Ref(2)P aggregates and promotes autophagy by activation of Atg1 in Drosophila , 2014, Autophagy.

[46]  N. Oshiro,et al.  Tor Directly Controls the Atg1 Kinase Complex To Regulate Autophagy , 2009, Molecular and Cellular Biology.

[47]  S. Subramani,et al.  PpAtg30 tags peroxisomes for turnover by selective autophagy. , 2008, Developmental cell.

[48]  Ivan Dikic,et al.  A role for ubiquitin in selective autophagy. , 2009, Molecular cell.

[49]  P. Dennis,et al.  A novel, human Atg13 binding protein, Atg101, interacts with ULK1 and is essential for macroautophagy , 2009, Autophagy.

[50]  S. Emr,et al.  Autophagy as a regulated pathway of cellular degradation. , 2000, Science.

[51]  N. Mizushima,et al.  The role of the Atg1/ULK1 complex in autophagy regulation. , 2010, Current opinion in cell biology.

[52]  N. Mizushima,et al.  Formation of the ∼350-kDa Apg12-Apg5·Apg16 Multimeric Complex, Mediated by Apg16 Oligomerization, Is Essential for Autophagy in Yeast* , 2002, The Journal of Biological Chemistry.

[53]  Wanke Zhao,et al.  Myotubularin family phosphatase ceMTM3 is required for muscle maintenance by preventing excessive autophagy in Caenorhabditis elegans , 2012, BMC Cell Biology.

[54]  Takeshi Noda,et al.  A ubiquitin-like system mediates protein lipidation , 2000, Nature.

[55]  N. Mizushima,et al.  Methods in Mammalian Autophagy Research , 2010, Cell.

[56]  Guido Kroemer,et al.  Self-eating and self-killing: crosstalk between autophagy and apoptosis , 2007, Nature Reviews Molecular Cell Biology.

[57]  Sam W. Lee,et al.  Identification of ROCK1 kinase as a critical regulator of Beclin1 mediated autophagy during metabolic stress , 2013, Nature Communications.

[58]  Jian Yu,et al.  Following cytochrome c release, autophagy is inhibited during chemotherapy-induced apoptosis by caspase 8-mediated cleavage of Beclin 1. , 2011, Cancer research.

[59]  Ruedi Aebersold,et al.  Early Steps in Autophagy Depend on Direct Phosphorylation of Atg9 by the Atg1 Kinase , 2014, Molecular cell.

[60]  C. Jung,et al.  ULK-Atg13-FIP200 complexes mediate mTOR signaling to the autophagy machinery. , 2009, Molecular biology of the cell.

[61]  S. Ryter,et al.  Autophagy in human health and disease. , 2013, The New England journal of medicine.

[62]  L. Tsai,et al.  Negative regulation of Vps34 by Cdk mediated phosphorylation. , 2010, Molecular cell.

[63]  H. Xu,et al.  Abstract 3836: Identification of PTPsigma as an autophagic phosphatase , 2011 .

[64]  Lei Li,et al.  WASH inhibits autophagy through suppression of Beclin 1 ubiquitination , 2013, The EMBO journal.

[65]  K. Tracey,et al.  Endogenous HMGB1 regulates autophagy , 2010, The Journal of cell biology.

[66]  D. Klionsky,et al.  Atg8 controls phagophore expansion during autophagosome formation. , 2008, Molecular biology of the cell.

[67]  Takeshi Noda,et al.  The Reversible Modification Regulates the Membrane-Binding State of Apg8/Aut7 Essential for Autophagy and the Cytoplasm to Vacuole Targeting Pathway , 2000, The Journal of cell biology.

[68]  T. Noda,et al.  The Atg16L complex specifies the site of LC3 lipidation for membrane biogenesis in autophagy. , 2008, Molecular biology of the cell.

[69]  D. Klionsky,et al.  Atg11 links cargo to the vesicle-forming machinery in the cytoplasm to vacuole targeting pathway. , 2005, Molecular biology of the cell.

[70]  H. Xu,et al.  Identification of PTPσ as an autophagic phosphatase , 2011, Journal of Cell Science.

[71]  E. Sakai,et al.  Cathepsin E Deficiency Impairs Autophagic Proteolysis in Macrophages , 2013, PloS one.

[72]  A. Ernst,et al.  Cargo recognition and trafficking in selective autophagy , 2014, Nature Cell Biology.

[73]  Yoshiaki Kamada,et al.  Apg13p and Vac8p Are Part of a Complex of Phosphoproteins That Are Required for Cytoplasm to Vacuole Targeting* , 2000, The Journal of Biological Chemistry.

[74]  S. Subramani,et al.  Phosphorylation of mitophagy and pexophagy receptors coordinates their interaction with Atg8 and Atg11 , 2013, EMBO reports.

[75]  Michael D. Schneider,et al.  Bcl-2 Antiapoptotic Proteins Inhibit Beclin 1-Dependent Autophagy , 2005, Cell.

[76]  M. Mann,et al.  Proteomic analysis of post-translational modifications , 2003, Nature Biotechnology.

[77]  Hiroyuki Kumeta,et al.  The structure of Atg4B–LC3 complex reveals the mechanism of LC3 processing and delipidation during autophagy , 2009, The EMBO journal.

[78]  K. Uchida,et al.  Discovery of a novel type of autophagy targeting RNA , 2013, Autophagy.

[79]  N. Mizushima,et al.  Beclin 1 forms two distinct phosphatidylinositol 3-kinase complexes with mammalian Atg14 and UVRAG. , 2008, Molecular biology of the cell.

[80]  M. Schaller,et al.  Atg13 and FIP200 act independently of Ulk1 and Ulk2 in autophagy induction , 2011, Autophagy.

[81]  D. Klionsky,et al.  Multiple roles of the cytoskeleton in autophagy , 2009, Biological reviews of the Cambridge Philosophical Society.

[82]  Gustav Ammerer,et al.  Activation of Atg1 kinase in autophagy by regulated phosphorylation , 2010, Autophagy.

[83]  D. Tang,et al.  HMGB1-dependent and -independent autophagy , 2014, Autophagy.

[84]  I. Nonaka,et al.  Autophagic degradation of nuclear components in mammalian cells , 2009, Autophagy.

[85]  J. Guan,et al.  Nutrient-dependent mTORC1 association with the ULK1-Atg13-FIP200 complex required for autophagy. , 2009, Molecular biology of the cell.

[86]  In Hye Lee,et al.  Regulation of Autophagy by the p300 Acetyltransferase* , 2009, Journal of Biological Chemistry.

[87]  J. DeVoss,et al.  A Crohn’s disease variant in Atg16l1 enhances its degradation by caspase 3 , 2014, Nature.

[88]  S. J. Deminoff,et al.  An evolutionary proteomics approach identifies substrates of the cAMP-dependent protein kinase. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[89]  G. Takaesu,et al.  Structure of the human ATG12~ATG5 conjugate required for LC3 lipidation in autophagy , 2012, Nature Structural &Molecular Biology.

[90]  T. Uzu,et al.  Calorie restriction enhances cell adaptation to hypoxia through Sirt1-dependent mitochondrial autophagy in mouse aged kidney. , 2010, The Journal of clinical investigation.

[91]  N. Mizushima,et al.  The Hairpin-type Tail-Anchored SNARE Syntaxin 17 Targets to Autophagosomes for Fusion with Endosomes/Lysosomes , 2012, Cell.

[92]  Kazuya Nagano,et al.  Tor-Mediated Induction of Autophagy via an Apg1 Protein Kinase Complex , 2000, The Journal of cell biology.

[93]  Hong Zhang,et al.  The C. elegans ATG101 homolog EPG-9 directly interacts with EPG-1/Atg13 and is essential for autophagy , 2012, Autophagy.

[94]  T. Yoshimori,et al.  The origin of the autophagosomal membrane , 2010, Nature Cell Biology.

[95]  P. Seglen,et al.  Proteomic Analysis of Membrane-Associated Proteins from Rat Liver Autophagosomes , 2007, Autophagy.

[96]  A. Matsuura,et al.  Analyses of APG13 gene involved in autophagy in yeast, Saccharomyces cerevisiae. , 1997, Gene.

[97]  V. Lelyveld,et al.  A Single Protease, Apg4B, Is Specific for the Autophagy-related Ubiquitin-like Proteins GATE-16, MAP1-LC3, GABARAP, and Apg8L* , 2003, Journal of Biological Chemistry.

[98]  T. Proikas-Cezanne,et al.  Control of autophagy initiation by phosphoinositide 3‐phosphatase jumpy , 2009, The EMBO journal.

[99]  P. Bénit,et al.  Spermidine and resveratrol induce autophagy by distinct pathways converging on the acetylproteome , 2011, The Journal of cell biology.

[100]  A. Grichine,et al.  JCB: REPORT , 2009 .

[101]  Xuejun Wang,et al.  Posttranslational modification and quality control. , 2013, Circulation research.

[102]  Takeshi Noda,et al.  LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing , 2000, The EMBO journal.

[103]  C. Jung,et al.  ULK1 inhibits the kinase activity of mTORC1 and cell proliferation , 2011, Autophagy.

[104]  D. Rubinsztein,et al.  Apoptosis blocks Beclin 1-dependent autophagosome synthesis – an effect rescued by Bcl-xL , 2009, Cell Death and Differentiation.

[105]  Jeffrey J. Nirschl,et al.  LC3 binding to the scaffolding protein JIP1 regulates processive dynein-driven transport of autophagosomes. , 2014, Developmental cell.

[106]  B. Turk,et al.  AMPK phosphorylation of raptor mediates a metabolic checkpoint. , 2008, Molecular cell.

[107]  G. Bhagat,et al.  Akt-Mediated Regulation of Autophagy and Tumorigenesis Through Beclin 1 Phosphorylation , 2012, Science.

[108]  S. Munro,et al.  Membrane Delivery to the Yeast Autophagosome from the Golgi–Endosomal System , 2010, Molecular biology of the cell.

[109]  B. Levine Eating Oneself and Uninvited Guests Autophagy-Related Pathways in Cellular Defense , 2005, Cell.

[110]  Yuh-Ying Yeh,et al.  Autophosphorylation Within the Atg1 Activation Loop Is Required for Both Kinase Activity and the Induction of Autophagy in Saccharomyces cerevisiae , 2010, Genetics.

[111]  D. Klionsky,et al.  In vivo reconstitution of autophagy in Saccharomyces cerevisiae , 2008, The Journal of cell biology.

[112]  Hong-Gang Wang,et al.  The Association of AMPK with ULK1 Regulates Autophagy , 2010, PloS one.

[113]  C. Shi,et al.  TRAF6 and A20 Regulate Lysine 63–Linked Ubiquitination of Beclin-1 to Control TLR4-Induced Autophagy , 2010, Science Signaling.

[114]  S. Scherer,et al.  Endothelial Nitric-oxide Synthase Antisense (NOS3AS) Gene Encodes an Autophagy-related Protein (APG9-like2) Highly Expressed in Trophoblast* , 2005, Journal of Biological Chemistry.

[115]  D. Klionsky,et al.  A role for Atg8–PE deconjugation in autophagosome biogenesis , 2012, Autophagy.

[116]  Y. Ohsumi,et al.  Ubiquitin and proteasomes: Molecular dissection of autophagy: two ubiquitin-like systems , 2001, Nature Reviews Molecular Cell Biology.

[117]  V. Deretic,et al.  The role of PI3P phosphatases in the regulation of autophagy , 2010, FEBS letters.

[118]  Li Yu,et al.  Function and Molecular Mechanism of Acetylation in Autophagy Regulation , 2012, Science.

[119]  C. Kraft,et al.  Hrr25 kinase promotes selective autophagy by phosphorylating the cargo receptor Atg19 , 2014, EMBO reports.

[120]  Y. Ohsumi Historical landmarks of autophagy research , 2013, Cell Research.

[121]  B. Viollet,et al.  Phosphorylation of ULK1 (hATG1) by AMP-Activated Protein Kinase Connects Energy Sensing to Mitophagy , 2011, Science.

[122]  B. Levine,et al.  The autophagy effector Beclin 1: a novel BH3-only protein , 2008, Oncogene.

[123]  D. Klionsky,et al.  The machinery of macroautophagy , 2013, Cell Research.

[124]  Z. Elazar,et al.  Reactive oxygen species are essential for autophagy and specifically regulate the activity of Atg4 , 2007, The EMBO journal.

[125]  G. Takaesu,et al.  Structural basis of ATG3 recognition by the autophagic ubiquitin-like protein ATG12 , 2013, Proceedings of the National Academy of Sciences.

[126]  J. Cregg,et al.  Pexophagy: The Selective Autophagy of Peroxisomes , 2005, Autophagy.

[127]  P. Walter,et al.  ER-Phagy: Selective Autophagy of the Endoplasmic Reticulum , 2007, Autophagy.

[128]  R. Youle,et al.  Mechanisms of mitophagy , 2010, Nature Reviews Molecular Cell Biology.

[129]  S. Pattingre,et al.  JNK1-mediated phosphorylation of Bcl-2 regulates starvation-induced autophagy. , 2008, Molecular cell.

[130]  Xiaodong Wang,et al.  Nutrient starvation elicits an acute autophagic response mediated by Ulk1 dephosphorylation and its subsequent dissociation from AMPK , 2011, Proceedings of the National Academy of Sciences.

[131]  M. Sohrmann,et al.  Mature ribosomes are selectively degraded upon starvation by an autophagy pathway requiring the Ubp3p/Bre5p ubiquitin protease , 2008, Nature Cell Biology.

[132]  S. J. Deminoff,et al.  The Tor and PKA signaling pathways independently target the Atg1/Atg13 protein kinase complex to control autophagy , 2009, Proceedings of the National Academy of Sciences.

[133]  D. Rubinsztein,et al.  Autophagosome Precursor Maturation Requires Homotypic Fusion , 2011, Cell.

[134]  N. Grishin,et al.  EGFR-Mediated Beclin 1 Phosphorylation in Autophagy Suppression, Tumor Progression, and Tumor Chemoresistance , 2013, Cell.

[135]  Leon H. Chew,et al.  Atg29 phosphorylation regulates coordination of the Atg17-Atg31-Atg29 complex with the Atg11 scaffold during autophagy initiation , 2013, Proceedings of the National Academy of Sciences.

[136]  Hui Zhang,et al.  Cytosolic FoxO1 is essential for the induction of autophagy and tumour suppressor activity , 2010, Nature Cell Biology.

[137]  F. Inagaki,et al.  The Crystal Structure of Atg3, an Autophagy-related Ubiquitin Carrier Protein (E2) Enzyme that Mediates Atg8 Lipidation* , 2007, Journal of Biological Chemistry.

[138]  Daniel J Klionsky,et al.  The Atg8 and Atg12 ubiquitin‐like conjugation systems in macroautophagy , 2008, EMBO reports.

[139]  V. Dötsch,et al.  Interactions between autophagy receptors and ubiquitin-like proteins form the molecular basis for selective autophagy. , 2014, Molecular cell.

[140]  Z. Ronai,et al.  Emerging roles of E3 ubiquitin ligases in autophagy. , 2013, Trends in biochemical sciences.

[141]  M. Komatsu,et al.  Human Apg3p/Aut1p Homologue Is an Authentic E2 Enzyme for Multiple Substrates, GATE-16, GABARAP, and MAP-LC3, and Facilitates the Conjugation of hApg12p to hApg5p* , 2002, The Journal of Biological Chemistry.

[142]  D. Klionsky,et al.  Atg22 recycles amino acids to link the degradative and recycling functions of autophagy. , 2006, Molecular biology of the cell.

[143]  T. Ueno,et al.  The Human Homolog of Saccharomyces cerevisiae Apg7p Is a Protein-activating Enzyme for Multiple Substrates Including Human Apg12p, GATE-16, GABARAP, and MAP-LC3* , 2001, The Journal of Biological Chemistry.

[144]  Thomas Schaffner,et al.  Calpain-mediated cleavage of Atg5 switches autophagy to apoptosis , 2006, Nature Cell Biology.

[145]  D. Klionsky,et al.  The Ras/cAMP-dependent Protein Kinase Signaling Pathway Regulates an Early Step of the Autophagy Process in Saccharomyces cerevisiae* , 2004, Journal of Biological Chemistry.

[146]  M. Schlumpberger,et al.  AUT1, a gene essential for autophagocytosis in the yeast Saccharomyces cerevisiae , 1997, Journal of bacteriology.

[147]  J. Cleveland,et al.  Mapping the phosphorylation sites of Ulk1. , 2009, Journal of proteome research.

[148]  D. Klionsky,et al.  Two MAPK-signaling pathways are required for mitophagy in Saccharomyces cerevisiae , 2011, The Journal of cell biology.

[149]  A. Yamamoto,et al.  LC3, GABARAP and GATE16 localize to autophagosomal membrane depending on form-II formation , 2004, Journal of Cell Science.

[150]  J. Kim,et al.  Caspase-mediated cleavage of ATG6/Beclin-1 links apoptosis to autophagy in HeLa cells. , 2009, Cancer letters.

[151]  D. Fingar,et al.  ULK1 inhibits mTORC1 signaling, promotes multisite Raptor phosphorylation and hinders substrate binding , 2011, Autophagy.

[152]  R. DePinho,et al.  Deacetylation of FoxO by Sirt1 Plays an Essential Role in Mediating Starvation-Induced Autophagy in Cardiac Myocytes , 2010, Circulation research.

[153]  D. James,et al.  The serine/threonine kinase ULK1 is a target of multiple phosphorylation events. , 2011, The Biochemical journal.

[154]  Guido Kroemer,et al.  Autophagy in the Pathogenesis of Disease , 2008, Cell.

[155]  S. Gygi,et al.  Defining the Human Deubiquitinating Enzyme Interaction Landscape , 2009, Cell.

[156]  Frank Sinner,et al.  Induction of autophagy by spermidine promotes longevity , 2009, Nature Cell Biology.

[157]  Y. Araki,et al.  Atg38 is required for autophagy-specific phosphatidylinositol 3-kinase complex integrity , 2013, The Journal of cell biology.

[158]  T. Noda,et al.  Modulation of Local PtdIns3P Levels by the PI Phosphatase MTMR3 Regulates Constitutive Autophagy , 2010, Traffic.

[159]  T. Pawson,et al.  Post-translational modifications in signal integration , 2010, Nature Structural &Molecular Biology.

[160]  Daniel J. Klionsky,et al.  Autophagy in Health and Disease: A Double-Edged Sword , 2004, Science.

[161]  F. Inagaki,et al.  The Atg12-Atg5 Conjugate Has a Novel E3-like Activity for Protein Lipidation in Autophagy* , 2007, Journal of Biological Chemistry.

[162]  Haiyan Wu,et al.  hVps15, but not Ca2+/CaM, is required for the activity and regulation of hVps34 in mammalian cells , 2008, The Biochemical journal.

[163]  V. Malhotra,et al.  Non-autophagic roles of autophagy-related proteins , 2013, EMBO reports.

[164]  J. Bewersdorf,et al.  Lipidation of the LC3/GABARAP family of autophagy proteins relies upon a membrane curvature-sensing domain in Atg3 , 2014, Nature Cell Biology.

[165]  Z. Shao,et al.  Kinetics Comparisons of Mammalian Atg4 Homologues Indicate Selective Preferences toward Diverse Atg8 Substrates* , 2010, The Journal of Biological Chemistry.

[166]  K. Kersse,et al.  Caspase-mediated cleavage of Beclin-1 inactivates Beclin-1-induced autophagy and enhances apoptosis by promoting the release of proapoptotic factors from mitochondria , 2010, Cell Death and Disease.

[167]  D. Klionsky,et al.  Atg9 Cycles Between Mitochondria and the Pre-Autophagosomal Structure in Yeasts , 2005, Autophagy.

[168]  S. Gygi,et al.  Quantitative proteomics identifies NCOA4 as the cargo receptor mediating ferritinophagy , 2014, Nature.

[169]  D. Klionsky,et al.  Self-interaction is critical for Atg9 transport and function at the phagophore assembly site during autophagy. , 2008, Molecular biology of the cell.

[170]  O. Hermanson,et al.  The histone H4 lysine 16 acetyltransferase hMOF regulates the outcome of autophagy , 2013, Nature.

[171]  Miriam Eisenstein,et al.  DAP‐kinase‐mediated phosphorylation on the BH3 domain of beclin 1 promotes dissociation of beclin 1 from Bcl‐XL and induction of autophagy , 2009, EMBO reports.

[172]  Robert Clarke,et al.  Guidelines for the use and interpretation of assays for monitoring autophagy , 2012 .

[173]  Takeshi Noda,et al.  Two Distinct Vps34 Phosphatidylinositol 3–Kinase Complexes Function in Autophagy and Carboxypeptidase Y Sorting inSaccharomyces cerevisiae , 2001, The Journal of cell biology.

[174]  Jemma L. Webber,et al.  Coordinated regulation of autophagy by p38α MAPK through mAtg9 and p38IP , 2010, The EMBO journal.

[175]  S. Gygi,et al.  Network organization of the human autophagy system , 2010, Nature.

[176]  D. Klionsky,et al.  Apg7p/Cvt2p is required for the cytoplasm-to-vacuole targeting, macroautophagy, and peroxisome degradation pathways. , 1999, Molecular biology of the cell.

[177]  N. Mizushima,et al.  Autophagy in mammalian development and differentiation , 2010, Nature Cell Biology.

[178]  J. Debnath,et al.  ATG12 Conjugation to ATG3 Regulates Mitochondrial Homeostasis and Cell Death , 2010, Cell.

[179]  Qinxi Li,et al.  GSK3-TIP60-ULK1 Signaling Pathway Links Growth Factor Deprivation to Autophagy , 2012, Science.

[180]  M. Lotze,et al.  Strange attractors: DAMPs and autophagy link tumor cell death and immunity , 2013, Cell Death and Disease.

[181]  J. Cleveland,et al.  Hsp90-Cdc37 chaperone complex regulates Ulk1- and Atg13-mediated mitophagy. , 2011, Molecular cell.

[182]  Guido Kroemer,et al.  Autophagy and the integrated stress response. , 2010, Molecular cell.

[183]  G. Barber,et al.  Cyclic Dinucleotides Trigger ULK1 (ATG1) Phosphorylation of STING to Prevent Sustained Innate Immune Signaling , 2013, Cell.

[184]  T. Saigusa,et al.  Phosphorylation of Serine 114 on Atg32 mediates mitophagy , 2011, Molecular biology of the cell.

[185]  Y. Graba,et al.  The emerging role of acetylation in the regulation of autophagy , 2013, Autophagy.

[186]  Mauro Piacentini,et al.  mTOR inhibits autophagy by controlling ULK1 ubiquitylation, self-association and function through AMBRA1 and TRAF6 , 2013, Nature Cell Biology.

[187]  T. Saigusa,et al.  Casein kinase 2 is essential for mitophagy , 2013, EMBO reports.

[188]  A. Matsuura,et al.  Apg1p, a novel protein kinase required for the autophagic process in Saccharomyces cerevisiae. , 1997, Gene.

[189]  F. Inagaki,et al.  Autophagy-related Protein 32 Acts as Autophagic Degron and Directly Initiates Mitophagy* , 2012, The Journal of Biological Chemistry.

[190]  H. Virgin,et al.  Autophagy in immunity and inflammation , 2011, Nature.

[191]  Nicholas E. Bruns,et al.  A role for the NAD-dependent deacetylase Sirt1 in the regulation of autophagy , 2008, Proceedings of the National Academy of Sciences.

[192]  Jun O. Liu,et al.  Arginine68 is an essential residue for the C-terminal cleavage of human Atg8 family proteins , 2013, BMC Cell Biology.

[193]  Michael D. George,et al.  A protein conjugation system essential for autophagy , 1998, Nature.

[194]  N. Mizushima,et al.  Formation of the approximately 350-kDa Apg12-Apg5.Apg16 multimeric complex, mediated by Apg16 oligomerization, is essential for autophagy in yeast. , 2002, The Journal of biological chemistry.

[195]  Cleavage of Atg3 protein by caspase-8 regulates autophagy during receptor-activated cell death , 2012, Apoptosis.

[196]  M. Mann,et al.  4. Proteomic Analysis of Posttranslational Modifications , 2013 .

[197]  D. Klionsky,et al.  Eaten alive: a history of macroautophagy , 2010, Nature Cell Biology.

[198]  J. Lane,et al.  Caspase cleavage of Atg4D stimulates GABARAP-L1 processing and triggers mitochondrial targeting and apoptosis , 2009, Journal of Cell Science.

[199]  Z. Elazar,et al.  LC3 and GATE‐16/GABARAP subfamilies are both essential yet act differently in autophagosome biogenesis , 2010, The EMBO journal.

[200]  D. Klionsky,et al.  An overview of autophagy: morphology, mechanism, and regulation. , 2014, Antioxidants & redox signaling.