The degree sequences and spectra of scale‐free random graphs

We investigate the degree sequences of scale-free random graphs. We obtain a formula for the limiting proportion of vertices with degree d, confirming non-rigorous arguments of Dorogovtsev et al [10]. We also consider a generalisation of the model with more randomisation, proving similar results. Finally, we use our results on the degree sequence to show that for certain values of parameters localised eigenfunctions of the adjacency matrix can be found. 2

[1]  Deryk Osthus,et al.  Popularity based random graph models leading to a scale-free degree sequence , 2004, Discret. Math..

[2]  G. J. Rodgers,et al.  Growing networks with two vertex types , 2003 .

[3]  Z. Neda,et al.  Measuring preferential attachment in evolving networks , 2001, cond-mat/0104131.

[4]  Z. Neda,et al.  Networks in life: Scaling properties and eigenvalue spectra , 2002, cond-mat/0303106.

[5]  S. N. Dorogovtsev,et al.  Spectra of complex networks. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[6]  A. Barabasi,et al.  Evolution of the social network of scientific collaborations , 2001, cond-mat/0104162.

[7]  Béla Bollobás,et al.  The degree sequence of a scale‐free random graph process , 2001, Random Struct. Algorithms.

[8]  Béla Bollobás,et al.  Mathematical results on scale‐free random graphs , 2005 .

[9]  G. B. A. Barab'asi Competition and multiscaling in evolving networks , 2000, cond-mat/0011029.

[10]  Reka Albert,et al.  Mean-field theory for scale-free random networks , 1999 .

[11]  A. Barabasi,et al.  Spectra of "real-world" graphs: beyond the semicircle law. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[12]  S. N. Dorogovtsev,et al.  Structure of growing networks with preferential linking. , 2000, Physical review letters.

[13]  Alan M. Frieze,et al.  A general model of web graphs , 2003, Random Struct. Algorithms.