Artificial Intelligence Solutions for Urban Land Dynamics: A Review

Artificial intelligence (AI) systems are widely accepted as a technology offering an alternative way to tackle complex and dynamic problems in urban studies. The goal of this article is a review of current literature in the field of planning and AI. The aim of this review is to increase the understanding of how AI approaches urban and land dynamics modeling processes and how, as a result, researchers can structure that knowledge and choose the correct approaches to embed in their models. For this purpose, the authors review the applications of AI techniques in urban land dynamics domain as well as the emerging challenges they face. The authors discuss hybrid AI systems as a need resulting from the trend in planning policy to develop more holistic approaches. The authors conclude that, although challenges exist, AI-based approaches offer promising solutions for urban and land dynamics.

[1]  Peter van Oosterom,et al.  Computers, Environment and Urban Systems , 2009 .

[2]  Peter A. Whigham,et al.  The dynamic geometry of geographical vector agents , 2007, Comput. Environ. Urban Syst..

[3]  Kyushik Oh,et al.  The Usefulness of the GIS—Fuzzy Set Approach in Evaluating the Urban Residential Environment , 2002 .

[4]  Stan Openshaw,et al.  Artificial intelligence in geography , 1997 .

[5]  Peter S. Sell,et al.  Expert Systems-A Practical Introduction , 1987, IEEE Expert.

[6]  Ayman A. Al-Lawama,et al.  The Advantages of PID Fuzzy Controllers Over The Conventional Types , 2008 .

[7]  Thomas Hatzichristos,et al.  A Fuzzy Cellular Automata Based Shell for Modeling Urban Growth – A Pilot Application in Mesogia Area , 2007 .

[8]  Dušan Teodorović,et al.  Mitigating Traffic Congestion: Solving the Ride-Matching Problem by Bee Colony Optimization , 2008 .

[9]  S. Al-kheder,et al.  Fuzzy inference guided cellular automata urban‐growth modelling using multi‐temporal satellite images , 2008, Int. J. Geogr. Inf. Sci..

[10]  Richard J. Balling,et al.  Multiobjective Urban Planning Using Genetic Algorithm , 1999 .

[11]  Frank Witlox,et al.  Expert systems in land-use planning: An overview , 2005, Expert Syst. Appl..

[12]  Lu Shoufeng,et al.  Based on Hybrid Genetic Algorithm and Cellular Automata Combined Traffic Signal Control and Route Guidance , 2006, 2007 Chinese Control Conference.

[13]  M Batty,et al.  Preliminary Evidence for a Theory of the Fractal City , 1996, Environment & planning A.

[14]  Willy Verheye,et al.  Application of computer captured knowledge in land evaluation, using ALES in central Ethiopia , 1995 .

[15]  Matteo Matteucci,et al.  Ant colony optimization technique for equilibrium assignment in congested transportation networks , 2006, GECCO '06.

[16]  Stan C. M. Geertman,et al.  Spatial‐temporal specific neighbourhood rules for cellular automata land‐use modelling , 2007, Int. J. Geogr. Inf. Sci..

[17]  Steven M. Manson,et al.  Agent-based modeling and genetic programming for modeling land change in the Southern Yucatán Peninsular Region of Mexico , 2005 .

[18]  M. Ramsey,et al.  Monitoring urban land cover change: An expert system approach to land cover classification of semiarid to arid urban centers , 2001 .

[19]  Theodor J. Stewart,et al.  A genetic algorithm approach to multiobjective land use planning , 2004, Comput. Oper. Res..

[20]  Hjp Harry Timmermans,et al.  A Multi-Agent Cellular Automata Model of Pedestrian Movement , 2001 .

[21]  Suzana Dragicevic,et al.  Enhancing a GIS Cellular Automata Model of Land Use Change: Bayesian Networks, Influence Diagrams and Causality , 2007, Trans. GIS.

[22]  Roger M. Whitaker,et al.  An agent based approach to site selection for wireless networks , 2002, SAC '02.

[23]  Xia Li,et al.  Defining agents' behaviors to simulate complex residential development using multicriteria evaluation. , 2007, Journal of environmental management.

[24]  Sang Nguyen,et al.  Spatial Allocation on a Network with Congestion , 1981 .

[25]  Kwok-wing Chau,et al.  A fifth generation numerical modelling system in coastal zone , 2001 .

[26]  James R. Craig,et al.  Pump-and-treat optimization using analytic element method flow models , 2006 .

[27]  T. V. Ramachandra,et al.  Framework for Integration of Agent-based and Cellular Automata Models for Dynamic Geospatial Simulations , 2006 .

[28]  Jia Tao,et al.  Discovery of transition rules for geographical cellular automata by using ant colony optimization , 2007 .

[29]  António Pais Antunes,et al.  Cellular Automata and Urban Studies: a Literature Survey , 2007 .

[30]  Zhang Li An artificial neural network model of the landscape pattern in Shanghai metropolitan region , 2005 .

[31]  J. Zhou,et al.  Using Genetic Learning Neural Networks for Spatial Decision Making in GIs , 1996 .

[32]  Slobodan P. Simonovic,et al.  Integration of heuristic knowledge with analytical tools for the selection of flood damage reduction measures , 2001 .

[33]  Michael B. Lowry Coordinated Regional and City Planning Using a Genetic Algorithm , 2004 .

[34]  William Millan,et al.  Smart Hill Climbing Finds Better Boolean Functions , 1997 .

[35]  Ema Silva Waves of Complexity: bifurcations or phase-transitions , 2006 .

[36]  Ikuo Matsuba,et al.  Scaling behavior in urban development process of Tokyo City and hierarchical dynamical structure , 2003 .

[37]  Xibao Xu,et al.  Integrating GIS, cellular automata, and genetic algorithm in urban spatial optimization: a case study of Lanzhou , 2006, Geoinformatics.

[38]  David Martin,et al.  Urban Expansion Simulation of Southeast England Using Population Surface Modelling and Cellular Automata , 2002 .

[39]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .

[40]  Anthony Gar-On Yeh,et al.  Neural-network-based cellular automata for simulating multiple land use changes using GIS , 2002, Int. J. Geogr. Inf. Sci..

[41]  Ning Liang,et al.  ASSG—an expert system for sandy grasslands in North China1The research was supported by the National Natural Science Foundation of China and the State Commission of Science and Technology of China.1 , 1999 .

[42]  J. Bishop Stochastic searching networks , 1989 .

[43]  Chak-Kuen Wong,et al.  A parallelized genetic algorithm for the calibration of Lowry model , 2001, Parallel Comput..

[44]  Ning Wu,et al.  Artificial intelligence and 'waves of complexity' for urban dynamics , 2009 .

[45]  T Miyagi A modelling of route choice behaviour in transportation networks: an approach from reinforcement learning , 2004 .

[46]  Susan Craw,et al.  Applying Genetic Algorithms to Multi-Objective Land Use Planning , 2000, GECCO.

[47]  J Comas,et al.  Development of a Case-Based System for the Supervision of an Activated Sludge Process , 2001, Environmental technology.

[48]  Ema Silva Complexity and CA and application to metropolitan areas. , 2010 .

[49]  P. Torrens,et al.  Geographic Automata Systems : A New Paradigm for Integrating GIS and Geographic Simulation , 2003 .

[50]  Kurt Fedra,et al.  Expert Systems for Environmental Screening. An Application in the Lower Mekong Basin , 1991 .

[51]  Fang-Chih Tien,et al.  USING HYBRID GENETIC ALGORITHMS TO SOLVE DISCRETE LOCATION ALLOCATION PROBLEMS WITH RECTILINEAR DISTANCE , 2007 .

[52]  L. Moeller-Jensen,et al.  Knowledge-based classification of an urban area using texture and context information in Landsat-TM imagery , 1990 .

[53]  E. Smith Emergent Properties of Balinese Water Temple Networks : Coadaptation on a Rugged Fitness Landscape , 2007 .

[54]  S. Dragi Embedding spatial agents into irregular cellular automata models of urban land use change to improve scenario exploration and decision making , 2007 .

[55]  Tanja Tötzer,et al.  Modeling growth and densification processes in sub-urban regions – simulation of landscape transition with spatial agents , 2005 .

[56]  Alfons Balmann,et al.  Adjustment costs of agri-environmental policy switchings: an agent-based analysis of the German region Hohenlohe. , 2002 .

[57]  H. T. Walter,et al.  ANALYSIS AND SIMULATION OF , 2004 .

[58]  Piotr Jankowski,et al.  Agent-Based Models as Laboratories for Spatially Explicit Planning Policies , 2007 .

[59]  Aaron C. Zecchin,et al.  Optimising the mutual information of ecological data clusters using evolutionary algorithms , 2006, Math. Comput. Model..

[60]  Jonathan Timmis,et al.  Artificial Immune Systems: A New Computational Intelligence Approach , 2003 .

[61]  Niandry Moreno,et al.  Biocomplexity of deforestation in the Caparo tropical forest reserve in Venezuela: An integrated multi-agent and cellular automata model , 2007, Environ. Model. Softw..

[62]  Kwok-wing Chau,et al.  A review on integration of artificial intelligence into water quality modelling. , 2006, Marine pollution bulletin.

[63]  Yuanhai Li,et al.  Optimal groundwater monitoring design using an ant colony optimization paradigm , 2007, Environ. Model. Softw..

[64]  Alexander B. Sideridis,et al.  GEDAS: an integrated geographical expert database system , 2003, Expert Syst. Appl..

[65]  Jingyan Song,et al.  Topology optimization for urban traffic sensor network , 2008 .

[66]  Bernard Moulin,et al.  Modeling transport networks with design pattern: application to hybrid traffic simulations , 2007 .

[67]  Michael Batty Dissecting the Streams of Planning History: Technology versus Policy through Models , 2004 .

[68]  R. Sietchiping,et al.  A Geographic Information Systems and cellular automata-based model of informal settlement growth , 2004 .

[69]  Inés Santé-Riveira,et al.  Algorithm based on simulated annealing for land-use allocation , 2008, Comput. Geosci..

[70]  Ilan Vertinsky,et al.  An object-oriented cellular automata model for forest planning problems , 2008 .

[71]  Jie Shan,et al.  Cellular automata urban growth model calibration with genetic algorithms , 2007, 2007 Urban Remote Sensing Joint Event.

[72]  Manuel López-Ibáñez,et al.  Ant colony optimization , 2010, GECCO '10.

[73]  Ma Feng-wei,et al.  On-line Reinforcement Learning Control for Urban Traffic Signals , 2006, 2007 Chinese Control Conference.

[74]  C. Gustav Lundberg,et al.  Knowledge-Dependent Models of Spatial Behavior , 1991 .

[75]  R. M. Faye,et al.  An Intelligent Decision Support System , 1998 .

[76]  M. M. Webber Land Use and Traffic Models: A Progress Report , 1959 .

[77]  Dipti Srinivasan,et al.  Hybrid fuzzy logic-genetic algorithm technique for automated detection of traffic incidents on freeways , 2001, ITSC 2001. 2001 IEEE Intelligent Transportation Systems. Proceedings (Cat. No.01TH8585).

[78]  David M Levinson,et al.  Models of Transportation and Land Use Change: A Guide to the Territory , 2008 .

[79]  Chulmin Jun,et al.  Design of an Intelligent Geographic Information System for Multi-criteria Site Analysis , 2007 .

[80]  Marco Dorigo,et al.  Ant colony optimization theory: A survey , 2005, Theor. Comput. Sci..

[81]  Dušan Teodorović,et al.  Bee Colony Optimization – a Cooperative Learning Approach to Complex Transportation Problems , 2005 .

[82]  Jack C. Wileden,et al.  Strategies for landscape ecology: An application using cellular automata models , 2008 .

[83]  Suzana Dragicevic,et al.  iCity: A GIS-CA modelling tool for urban planning and decision making , 2007, Environ. Model. Softw..

[84]  S.I. Shaheen,et al.  PSOSA: An Optimized Particle Swarm Technique for Solving the Urban Planning Problem , 2006, 2006 International Conference on Computer Engineering and Systems.

[85]  Daniel G. Brown,et al.  Knowledge-informed Pareto simulated annealing for multi-objective spatial allocation , 2007, Comput. Environ. Urban Syst..

[86]  G. Ramakrishna,et al.  Results of Egyptian unified grid hourly load forecasting using an artificial neural network with expert system interface , 1996 .

[87]  Angus R. Simpson,et al.  Application of two ant colony optimisation algorithms to water distribution system optimisation , 2006, Math. Comput. Model..

[88]  Luc Boerboom,et al.  Transition rule elicitation methods for urban cellular automata models , 2006 .

[89]  Xiaoping Liu,et al.  Embedding sustainable development strategies in agent‐based models for use as a planning tool , 2008, Int. J. Geogr. Inf. Sci..

[90]  David G. Rossiter ALES: a framework for land evaluation using a microcomputer , 1990 .

[91]  A-Xing Zhu,et al.  A case-based reasoning approach to fuzzy soil mapping , 2002 .

[92]  Laveen N. Kanal Book review: Search in Artificial Intelligence Ed. by Laveen Kanal and Vipin Kumar (Springer-Verlag, New York, 1988) , 1991, SGAR.

[93]  José António Tenedório,et al.  Modelling Coastal and Land Use Evolution Patterns through Neural Network and Cellular Automata Integration , 2007 .

[94]  Michaela BUERGLE LAND USE AND TRANSPORT SIMULATION: APPLYING URBANSIM IN THE GREATER ZURICH AREA , 2005 .

[95]  Stuart R. Phinn,et al.  Modelling urban development with cellular automata incorporating fuzzy-set approaches , 2003, Comput. Environ. Urban Syst..

[96]  Fen Qin,et al.  Research on the methods of automatic-generation of 3D virtual city , 2007, Geoinformatics.

[97]  Wei Wang,et al.  The Optimization Study on Passenger Organization at Large-scale Passenger Station during Rush Hours Based on Multi-Agent and Cellular Automata , 2007, 2007 IEEE International Conference on Automation and Logistics.

[98]  Thomas Berger,et al.  Agent-based spatial models applied to agriculture: A simulation tool , 2001 .

[99]  Gerard B. M. Heuvelink,et al.  Using simulated annealing for resource allocation , 2002, Int. J. Geogr. Inf. Sci..

[100]  Soteris A. Kalogirou,et al.  Artificial intelligence for the modeling and control of combustion processes: a review , 2003 .

[101]  Nikhil R. Pal,et al.  Land cover classification using fuzzy rules and aggregation of contextual information through evidence theory , 2006, IEEE Transactions on Geoscience and Remote Sensing.

[102]  Li Xia,et al.  Case-Based Reasoning (CBR) for Land Use Classification Using Radar Images , 2004 .

[103]  Attahiru Sule Alfa,et al.  A Network Design Algorithm Using a Stochastic Incremental Traffic Assignment Approach , 1991, Transp. Sci..

[104]  Elisabete A. Silva Waves of complexity: Theory, models and practice , 2010 .

[105]  S. Geertman,et al.  Spatial externalities, neighbourhood rules and CA land-use modelling , 2008 .

[106]  Kwok-wing Chau,et al.  Particle Swarm Optimization Training Algorithm for ANNs in Stage Prediction of Shing Mun River , 2006 .

[107]  Richard J. Balling,et al.  Generating Future Land-Use and Transportation Plans for High-Growth Cities Using a Genetic Algorithm , 2004 .

[108]  Anna Lawrynowicz,et al.  Hybrid approach with an expert system and a genetic algorithm to production management in the supply net , 2006, Intell. Syst. Account. Finance Manag..

[109]  E. Milner‐Gulland,et al.  A multi-agent system model of pastoralist behaviour in Kazakhstan , 2006 .

[110]  Michael Batty,et al.  Fractal Cities: A Geometry of Form and Function , 1996 .

[111]  Mohammed Atiquzzaman,et al.  Optimal design of water distribution network using shu2ed complex evolution , 2004 .

[112]  B. Pijanowski,et al.  Using neural networks and GIS to forecast land use changes: a Land Transformation Model , 2002 .

[113]  Rajan Batta,et al.  A simulated annealing approach to police district design , 2002, Comput. Oper. Res..

[114]  Keith C. Clarke,et al.  Replication of Spatio-temporal Land Use Patterns at Three Levels of Aggregation by an Urban Cellular Automata , 2004, ACRI.

[115]  J H Garrett,et al.  WHERE AND WHY ARTIFICIAL NEURAL NETWORKS ARE APPLICABLE IN CIVIL ENGINEERING , 1994 .

[116]  P. Venkataraman,et al.  Applied Optimization with MATLAB Programming , 2001 .

[117]  Nikolaos M. Avouris,et al.  Short-term air quality prediction using a case-based classifier , 2001, Environ. Model. Softw..

[118]  S. Dragićević,et al.  Coupling fuzzy sets theory and GIS-based cellular automata for land-use change modeling , 2004, IEEE Annual Meeting of the Fuzzy Information, 2004. Processing NAFIPS '04..

[119]  F W Ducca,et al.  A Model of Shopping Center Location , 1976 .

[120]  Michael Batty,et al.  Agents, Cells, and Cities: New Representational Models for Simulating Multiscale Urban Dynamics , 2005 .

[121]  Rouzbeh Shad,et al.  Evaluation of Indexing Overlay, Fuzzy Logic and Genetic Algorithm Methods for Industrial Estates Site Selection in GIS Environment , 2004 .

[122]  P. Torrens,et al.  Cellular Automata and Urban Simulation: Where Do We Go from Here? , 2001 .

[123]  Karim C. Abbaspour,et al.  Estimating unsaturated soil hydraulic parameters using ant colony optimization , 2001 .

[124]  Yinzhen Li,et al.  Models and Genetic Algorithms for the Optimal Stochastic Riding Routes in Urban Public Transportation and Its Applications , 2007, Third International Conference on Natural Computation (ICNC 2007).

[125]  P. G. Luckman,et al.  Use of Expert Systems and GIS in Land Evaluation , 1990 .

[126]  Jing Wang,et al.  Swarm Intelligence in Cellular Robotic Systems , 1993 .

[127]  Jack C. Wileden,et al.  Strategies for Landscape Ecology in Metropolitan Planning: Applications Using Cellular Automata Models , 2008 .

[128]  Elisabete A. Silva,et al.  The DNA of our regions: artificial intelligence in regional planning , 2004 .

[129]  T. V. Ramachandra,et al.  Integration of Agent-based and Cellular Automata Models for Simulating Urban Sprawl , 2004 .

[130]  Li Xia,et al.  Genetic algorithms for determining the parameters of cellular automata in urban simulation , 2007 .

[131]  Arnold K. Bregt,et al.  Multi-actor-based land use modelling: spatial planning using agents , 2001 .

[132]  Anna Ławrynowicz Hybrid approach with an expert system and a genetic algorithm to production management in the supply net , 2006 .

[133]  Janine Bolliger,et al.  Simulating complex landscapes with a generic model: Sensitivity to qualitative and quantitative classifications , 2005 .

[134]  Jacek Malczewski,et al.  GIS-based land-use suitability analysis: a critical overview , 2004 .

[135]  Antony Stathopoulos,et al.  Adaptive hybrid fuzzy rule-based system approach for modeling and predicting urban traffic flow , 2008 .

[136]  L. Alparone,et al.  Land cover classification of urban and sub-urban areas via fuzzy nearest-mean reclustering of SAR features , 2003, 2003 2nd GRSS/ISPRS Joint Workshop on Remote Sensing and Data Fusion over Urban Areas.

[137]  G. Towl Editorial , 2012, Evidence Based Mental Health.

[138]  Giulio Erberto Cantarella,et al.  Heuristics for urban road network design: Lane layout and signal settings , 2006, Eur. J. Oper. Res..

[139]  Paul W. H. Chung,et al.  Case-Based Reasoning for Estuarine Model Design , 2002, ECCBR.

[140]  Christina Bloebaum,et al.  Integrating a Genetic Algorithm Into a Knowledge-Based System for Ordering Complex Design Processes , 1996 .

[141]  Xia Li,et al.  Calibration of Cellular Automata by Using Neural Networks for the Simulation of Complex Urban Systems , 2001 .

[142]  Ralf Seppelt,et al.  A generic tool for optimising land-use patterns and landscape structures , 2007, Environ. Model. Softw..

[143]  Mahesh Pal,et al.  Artificial immune‐based supervised classifier for land‐cover classification , 2008 .

[144]  D. Ettema,et al.  PUMA: Multi-agent Modelling of urban systems , 2003 .

[145]  Byungkyu Brian Park,et al.  Application of Stochastic Optimization Method for an Urban Corridor , 2006, Proceedings of the 2006 Winter Simulation Conference.

[146]  C. Lavalle,et al.  Modelling dynamic spatial processes: simulation of urban future scenarios through cellular automata , 2003 .

[147]  K. Piyathamrongchai,et al.  Integrating Cellular Automata and Regional Dynamics Using Gis , 2007 .

[148]  Daniel G. Brown,et al.  Effects of Heterogeneity in Residential Preferences on an Agent-Based Model of Urban Sprawl , 2006 .

[149]  Nikolaos F. Matsatsinis,et al.  Intelligent Decision Support Methods , 2003 .

[150]  Zhang Li-quan,et al.  An artificial neural network model of the landscape pattern in Shanghai metropolitan region, China , 2006 .

[151]  Paul Schot,et al.  Land use change modelling: current practice and research priorities , 2004 .

[152]  AUTOMATIC CALIBRATION OF A CONCEPTUAL RAINFALL-RUNOFF MODEL USING SIMULTANEOUSLY SEVERAL HYDROLOGICAL EVENTS , 2010 .

[153]  Iain Brown,et al.  Modelling future landscape change on coastal floodplains using a rule-based GIS , 2006, Environ. Model. Softw..

[154]  Nuria Gómez Blas,et al.  SELF-ORGANIZING MAP AND CELLULAR AUTOMATA COMBINED TECHNIQUE FOR ADVANCED MESH GENERATION IN URBAN AND ARCHITECTURAL DESIGN , 2007 .

[155]  Frans TILLEMA CALIBRATION OF A CONCEPTUAL LUTI MODEL BASED ON NEURAL NETWORKS , 2005 .

[156]  Frank Witlox MATISSE: a relational expert system for industrial site selection , 2003, Expert Syst. Appl..

[157]  K. Happe Agricultural policies and farm structures: agent-based modelling and application to EU-policy reform , 2004 .

[158]  Bryan C. Pijanowski,et al.  Calibrating a neural network‐based urban change model for two metropolitan areas of the Upper Midwest of the United States , 2005, Int. J. Geogr. Inf. Sci..

[159]  N. Metropolis,et al.  Equation of State Calculations by Fast Computing Machines , 1953, Resonance.

[160]  C. N. Hewitt,et al.  Urban land classification and its uncertainties using principal component and cluster analyses: A case study for the UK West Midlands , 2006 .

[161]  Elisabete A. Silva,et al.  Complexity, emergence and cellular urban models: lessons learned from applying SLEUTH to two Portuguese metropolitan areas , 2005 .

[162]  N. Pinto,et al.  A microsimulation approach for modelling the growth of small urban areas , 2006 .

[163]  Ferdinando Semboloni Optimization and Control of the Urban Spatial Dynamics , 2004, Complexus.

[164]  Marc P. Armstrong,et al.  Genetic Algorithms and the Corridor Location Problem: Multiple Objectives and Alternative Solutions , 2008 .

[165]  Lei Jia,et al.  Study of Artificial Immune Clustering Algorithm and Its Applications to Urban Traffic Control , 2006 .

[166]  Andrew K. Skidmore,et al.  Integration of classification methods for improvement of land-cover map accuracy , 2002 .

[167]  Li Da Xu,et al.  An intelligent decision support system for fuzzy comprehensive evaluation of urban development , 1999 .

[168]  Michel Dreyfus-León,et al.  Individual-based modelling of fishermen search behaviour with neural networks and reinforcement learning , 1999 .

[169]  M. Janssen,et al.  Multi-Agent Systems for the Simulation of Land-Use and Land-Cover Change: A Review , 2003 .

[170]  Anthony Gar-On Yeh,et al.  Simulation of development alternatives using neural networks, cellular automata, and GIS for urban planning , 2003 .

[171]  Keith C. Clarke,et al.  An Artificial-Neural-Network-based, Constrained CA Model for Simulating Urban Growth , 2005 .

[172]  L. Møller-Jensen Classification of urban land cover based on expert systems, object models and texture , 1997 .

[173]  C. Webster Urban Morphological Fingerprints , 1995 .

[174]  Raul Queiroz Feitosa,et al.  Multitemporal fuzzy classification model based on class transition possibilities , 2007 .

[175]  G. D. Jenerette,et al.  © 2001 Kluwer Academic Publishers. Printed in the Netherlands. Research Article Analysis and simulation of land-use change in the central Arizona – , 2022 .

[176]  S. Kalogirou Expert systems and GIS: an application of land suitability evaluation , 2002 .

[177]  Ta Theo Arentze,et al.  A Heuristic Method for Land-Use Plan Generation in Planning Support Systems , 2006 .

[178]  Tim Hesterberg,et al.  Introduction to Stochastic Search and Optimization: Estimation, Simulation, and Control , 2004, Technometrics.

[179]  Vasant Dhar,et al.  Intelligent Decision Support Methods: The Science of Knowledge Work , 1996 .

[180]  Keith C. Clarke,et al.  Exploring the DNA of Our Regions: Classification of Outputs from the SLEUTH Model , 2006, ACRI.

[181]  Luis A. Bastidas,et al.  Multiobjective particle swarm optimization for parameter estimation in hydrology , 2006 .

[182]  Dušan Teodorović,et al.  Schedule synchronization in public transit using the fuzzy ant system , 2005 .

[183]  HE Jin-qiang,et al.  Analytical Learning-Based Intelligent Cellular Automata for Realistic and Idealized Urban Simulation , 2007 .

[184]  Ming-Hseng Tseng,et al.  A genetic algorithm rule-based approach for land-cover classification , 2008 .

[185]  Van-Nam Huynh,et al.  A context-dependent knowledge model for evaluation of regional environment , 2005, Environ. Model. Softw..

[186]  Christopher G. Langton,et al.  Studying artificial life with cellular automata , 1986 .

[187]  Henrik Madsen,et al.  Automatic calibration of a conceptual rainfall-runoff model using multiple objectives. , 2000 .

[188]  Elisabete A. Silva,et al.  Calibration of the SLEUTH urban growth model for Lisbon and Porto, Portugal , 2002 .

[189]  Noah Goldstein,et al.  Brains Vs. Brawn – Comparative Strategies For The Calibration Of A Cellular Automata – Based Urban Growth Model , 2003 .

[190]  Marvin E. Bauer,et al.  Integrating Contextual Information with per-Pixel Classification for Improved Land Cover Classification , 2000 .

[191]  Giovanni A. Rabino,et al.  Urban Sprawl: A Case Study for Project Gigalopolis Using SLEUTH Model , 2006, ACRI.

[192]  Chien-Hsing Wu,et al.  KBSLUA: A knowledge-based system applied in river land use assessment , 2008, Expert Syst. Appl..

[193]  Michael Batty,et al.  Cities and complexity - understanding cities with cellular automata, agent-based models, and fractals , 2007 .

[194]  Monica Wachowicz,et al.  A design and application of a multi-agent system for simulation of multi-actor spatial planning. , 2004, Journal of environmental management.

[195]  David F. Batten,et al.  Cities and Complexity: Understanding Cities with Cellular Automata, Agent‐Based Models, and Fractals, by Michael Batty , 2007 .

[196]  Liu Zhengjun,et al.  Integrating genetic algorithm method with neural network for land use classification using SZ-3 CMODIS data , 2005 .

[197]  F. Wu,et al.  Simulating urban encroachment on rural land with fuzzy-logic-controlled cellular automata in a geographical information system , 1998 .

[198]  Anthony J. Jakeman,et al.  Artificial Intelligence techniques: An introduction to their use for modelling environmental systems , 2008, Math. Comput. Simul..

[199]  Jinmu Choi,et al.  System Integration of GIS and a Rule-Based Expert System for Urban Mapping , 2004 .

[200]  J. Gareth Polhill,et al.  Agent-based land-use models: a review of applications , 2007, Landscape Ecology.

[201]  Richard E. Plant,et al.  Combining expert system and GIS technology to implement a state-transition model of oak woodlands , 2000 .

[202]  Xuan Zhu,et al.  ILUDSS: A knowledge-based spatial decision support system for strategic land-use planning , 1996 .

[203]  Pallav Negi,et al.  Artificial Immune System based urban traffic control , 2007 .

[204]  P H Rees,et al.  The Estimation of Population Microdata by Using Data from Small Area Statistics and Samples of Anonymised Records , 1998, Environment & planning A.

[205]  Le Wang,et al.  Improving urban classification through fuzzy supervised classification and spectral mixture analysis , 2007 .

[206]  Michael Schreckenberg,et al.  A multi-agent system for on-line simulations based on real-world traffic data , 2001, Proceedings of the 34th Annual Hawaii International Conference on System Sciences.