First Space-Based Microlens Parallax Measurement: Spitzer Observations of OGLE-2005-SMC-001

We combine Spitzer and ground-based observations to measure the microlens parallax of OGLE-2005-SMC-001, the first such space-based determination since S. Refsdal proposed the idea in 1966. The parallax measurement yields a projected velocity ν(over tilde) ~ 230 km s^(-1), the typical value expected for halo lenses, but an order of magnitude smaller than would be expected for lenses lying in the Small Magellanic Cloud itself. The lens is a weak (i.e., non-caustic-crossing) binary, which complicates the analysis considerably but ultimately contributes additional constraints. Using a test proposed by Assef and coworkers, which makes use only of kinematic information about different populations but does not make any assumptions about their respective mass functions, we find that the likelihood ratio is L_(halo)/L(SMC) = 20. Hence, halo lenses are strongly favored, but Small Magellanic Cloud (SMC) lenses are not definitively ruled out. Similar Spitzer observations of additional lenses toward the Magellanic Clouds would clarify the nature of the lens population. The Space Interferometry Mission could make even more constraining measurements.

[1]  Microlensing towards the Large Magellanic Cloud: a study of the LMC halo contribution , 2006, astro-ph/0607358.

[2]  Andrew Gould,et al.  The Mass of the MACHO-LMC-5 Lens Star , 2004 .

[3]  N. Palanque-Delabrouille,et al.  Removing the Microlensing Blending-Parallax Degeneracy Using Source Variability , 2006, astro-ph/0604147.

[4]  S. Refsdal,et al.  On the Possibility of Determining the Distances and Masses of Stars from the Gravitational Lens Effect , 1966 .

[5]  J. Beaulieu,et al.  A Complete Set of Solutions for Caustic Crossing Binary Microlensing Events , 1999, astro-ph/9903008.

[6]  Andrew Gould,et al.  SUBMITTED TO THE ASTROPHYSICAL JOURNAL Preprint typeset using LATEX style emulateapj v. 7/15/03 THE END OF THE MACHO ERA: LIMITS ON HALO DARK MATTER FROM STELLAR HALO WIDE BINARIES , 2003 .

[7]  G. Fazio,et al.  The Infrared Array Camera (IRAC) for the Spitzer Space Telescope , 2004, astro-ph/0405616.

[8]  B. Paczyński,et al.  Acceleration and parallax effects in gravitational microlensing , 2002, astro-ph/0210370.

[9]  A. J. Drake,et al.  The MACHO Project: Microlensing Results from 5.7 Years of Large Magellanic Cloud Observations , 2000, astro-ph/0001272.

[10]  M. Dominik,et al.  Detection of Rotation in a Binary Microlens: PLANET Photometry of MACHO 97-BLG-41* , 2000 .

[11]  C. Alcock,et al.  Is the SMC Bound to the LMC? The Hubble Space Telescope Proper Motion of the SMC , 2006, astro-ph/0606240.

[12]  A. J. Drake,et al.  Direct detection of a microlens in the Milky Way , 2001, Nature.

[13]  Martin G. Cohen,et al.  Absolute Calibration of the Infrared Array Camera on the Spitzer Space Telescope , 2005, astro-ph/0507139.

[14]  A. Gould,et al.  Photometric Microlens Parallaxes with the Space Interferometry Mission , 1999 .

[15]  S. F. Jorgensen,et al.  OGLE-2003-BLG-238: Microlensing Mass Estimate of an Isolated Star* , 2004, astro-ph/0404394.

[16]  A. Gould Microlens Parallaxes with SIRTF , 1998, astro-ph/9807247.

[17]  M. J. Lehner,et al.  First Observation of Parallax in a Gravitational Microlensing Event , 1995, astro-ph/9506114.

[18]  Michael Doran,et al.  Analyse this! A cosmological constraint package for CMBEASY , 2004 .

[19]  B. Gaudi,et al.  MOA 2003-BLG-37: A Bulge Jerk-Parallax Microlens Degeneracy , 2004, astro-ph/0401250.

[20]  M. Dominik,et al.  FIRST MICROLENS MASS MEASUREMENT: PLANET PHOTOMETRY OF EROS BLG-2000-5 , 2002 .

[21]  S. Refsdal,et al.  Flux variations of QSO 0957 + 561 A, B and image splitting by stars near the light path , 1979, Nature.

[22]  Bohdan Paczynski,et al.  Gravitational microlensing by the galactic halo , 1986 .

[23]  Andrew Gould MACHO Parallaxes from a Single Satellite , 1995 .

[24]  Andrew Gould,et al.  SYSTEMATIC ANALYSIS OF 22 MICROLENSING PARALLAX CANDIDATES , 2005, astro-ph/0506183.

[25]  D. Zaritsky,et al.  Spectroscopic Survey of Red Giants in the Small Magellanic Cloud. I. Kinematics , 2006, astro-ph/0601025.

[26]  L. Staveley-Smith,et al.  A New Look at the Kinematics of Neutral Hydrogen in the Small Magellanic Cloud , 2003, astro-ph/0312223.

[27]  Andrew Gould,et al.  Monte Carlo Simulations of MACHO Parallaxes from a Satellite , 1996 .

[28]  A. Gould,et al.  MICROLENSING EVENTS : THIN DISK, THICK DISK, OR HALO ? , 1994 .

[29]  Jan T. Kleyna,et al.  The tidal stripping of satellites , 2005, astro-ph/0506687.

[30]  P. J. Quinn,et al.  Possible gravitational microlensing of a star in the Large Magellanic Cloud , 1993, Nature.

[31]  E. Grebel,et al.  The Morphologies of the Small Magellanic Cloud , 2000, The Astrophysical journal.

[32]  Gravitational lens under perturbations: symmetry of perturbing potentials with invariant caustics , 2004, astro-ph/0410388.

[33]  E. Wright,et al.  The Spitzer Space Telescope Mission , 2004, astro-ph/0406223.

[34]  A. Gould Resolution of the MACHO-LMC-5 Puzzle: The Jerk-Parallax Microlens Degeneracy , 2003, astro-ph/0311548.

[35]  L. Vigroux,et al.  Evidence for gravitational microlensing by dark objects in the Galactic halo , 1993, Nature.

[36]  E. al.,et al.  Potential Direct Single-Star Mass Measurement , 2004, astro-ph/0405500.

[37]  A. Tomaney,et al.  MACHO Alert 95-30: First Real-Time Observation of Extended Source Effects in Gravitational Microlensing , 1997 .

[38]  Ivan R. King,et al.  The structure of star clusters. I. an empirical density law , 1962 .

[39]  Andrew Gould,et al.  MACHO Velocities from Satellite-based Parallaxes , 1994 .

[40]  J. B. Marquette,et al.  Limits on Galactic dark matter with 5 years of EROS SMC data , 2002, astro-ph/0212176.