2D Nanomaterials for Effective Energy Scavenging

[1]  Li-zhen Fan,et al.  Flexible solid-state self-charging supercapacitor based on symmetric electrodes and piezo-electrolyte , 2021 .

[2]  K. Krishnamoorthy,et al.  Antimonene dendritic nanostructures: Dual-functional material for high-performance energy storage and harvesting devices , 2020 .

[3]  Chengkuo Lee,et al.  Triboelectric nanogenerator sensors for soft robotics aiming at digital twin applications , 2020, Nature Communications.

[4]  Fengyi Wang,et al.  Self-Chargeable Flexible Solid-State Supercapacitor for Wearable Electronics. , 2020, ACS applied materials & interfaces.

[5]  Zhong Lin Wang,et al.  A piezoelectric nanogenerator promotes highly stretchable and self-chargeable supercapacitors , 2020 .

[6]  Jiaqi Yang,et al.  A flexible self-charging sodium-ion full battery for self-powered wearable electronics , 2020, Journal of Materials Chemistry A.

[7]  Yihe Zhang,et al.  A wearable solar-thermal-pyroelectric harvester: Achieving high power output using modified rGO-PEI and polarized PVDF , 2020 .

[8]  Zhenyu Sun,et al.  Two-dimensional materials for energy conversion and storage , 2020 .

[9]  Jia Zhang,et al.  Establishing charge-transfer excitons in 2D perovskite heterostructures , 2020, Nature Communications.

[10]  K. Krishnamoorthy,et al.  Probing the energy conversion process in piezoelectric-driven electrochemical self-charging supercapacitor power cell using piezoelectrochemical spectroscopy , 2020, Nature Communications.

[11]  T. Tao,et al.  Engineering pristine 2D metal–organic framework nanosheets for electrocatalysis , 2020 .

[12]  Zhiqiang Niu,et al.  A chemically self-charging aqueous zinc-ion battery , 2020, Nature Communications.

[13]  Hong Lin,et al.  A novel 2D perovskite as surface “patches” for efficient flexible perovskite solar cells , 2020 .

[14]  Ju-Hyuck Lee,et al.  Direct-current flexible piezoelectric nanogenerators based on two-dimensional ZnO nanosheet , 2020 .

[15]  W. Zhai,et al.  Structural Design and Pyroelectric Property of SnS/CdS Heterojunctions Contrived for Low‐Temperature Visible Photodetectors , 2020, Advanced Functional Materials.

[16]  L. Bu,et al.  Impact induced compound method for triboelectric-piezoelectric hybrid nanogenerators to achieve Watt level average power in low frequency rotations , 2020 .

[17]  Zhong Lin Wang,et al.  Self-cleaning triboelectric nanogenerator based on TiO2 photocatalysis , 2020 .

[18]  Zhuo-qing Yang,et al.  Electron transfer mechanism of graphene/Cu heterostructure for improving the stability of triboelectric nanogenerators , 2020 .

[19]  Yiyu Feng,et al.  Two-dimensional gersiloxenes with tunable bandgap for photocatalytic H2 evolution and CO2 photoreduction to CO , 2020, Nature Communications.

[20]  H. Jeong,et al.  Monolithic Contact Engineering to Boost Optoelectronic Performances of 2D Semiconductor Photovoltaic Heterojunctions. , 2020, Nano letters.

[21]  M. Nazeeruddin,et al.  Self‐Crystallized Multifunctional 2D Perovskite for Efficient and Stable Perovskite Solar Cells , 2020, Advanced Functional Materials.

[22]  Yongju Kim,et al.  Supramolecular Chiral 2D Materials and Emerging Functions , 2020, Advanced materials.

[23]  A. Marconnet,et al.  A thin film efficient pn-junction thermoelectric device fabricated by self-align shadow mask , 2020, Scientific Reports.

[24]  M. Naebe,et al.  2D transition metal dichalcogenide nanomaterials: advances, opportunities, and challenges in multi-functional polymer nanocomposites , 2020 .

[25]  Hongzhi Wang,et al.  Fluorinated metal-organic framework as bifunctional filler toward highly improving output performance of triboelectric nanogenerators , 2020 .

[26]  F. Rosei,et al.  Two-dimensional polymers grow up , 2019, Science.

[27]  Sida Luo,et al.  Stretchable Graphene Thin Film Enabled Yarn Sensors with Tunable Piezoresistivity for Human Motion Monitoring , 2019, Scientific Reports.

[28]  H. Olin,et al.  Laser-Etched Stretchable Graphene–Polymer Composite Array for Sensitive Strain and Viscosity Sensors , 2019, Nano-micro letters.

[29]  Wensheng Yang,et al.  Vacancy in Ultrathin 2D Nanomaterials toward Sustainable Energy Application , 2019, Advanced Energy Materials.

[30]  P. Li,et al.  Flexible self-powered high-performance ammonia sensor based on Au-decorated MoSe2 nanoflowers driven by single layer MoS2-flake piezoelectric nanogenerator , 2019, Nano Energy.

[31]  Yuanhao Wang,et al.  Photo-thermoelectric effect induced electricity in stretchable graphene-polymer nanocomposites for ultrasensitive strain sensing , 2019, Nano Research.

[32]  T. Ren,et al.  Graphene‐Based Devices for Thermal Energy Conversion and Utilization , 2019, Advanced Functional Materials.

[33]  Yun Wang,et al.  Heteroatom‐Mediated Interactions between Ruthenium Single Atoms and an MXene Support for Efficient Hydrogen Evolution , 2019, Advanced materials.

[34]  L. Liao,et al.  Tin Halide Perovskites: Progress and Challenges , 2019, Advanced Energy Materials.

[35]  G. Guan,et al.  Functionalized Hybridization of 2D Nanomaterials , 2019, Advanced science.

[36]  K. Zhu,et al.  Additive Engineering for Efficient and Stable Perovskite Solar Cells , 2019, Advanced Energy Materials.

[37]  K. Krishnamoorthy,et al.  High performance self-charging supercapacitors using a porous PVDF-ionic liquid electrolyte sandwiched between two-dimensional graphene electrodes , 2019, Journal of Materials Chemistry A.

[38]  R. Malik,et al.  Exceeding 20% efficiency with in situ group V doping in polycrystalline CdTe solar cells , 2019, Nature Energy.

[39]  Jaewoo Shim,et al.  Path towards graphene commercialization from lab to market , 2019, Nature Nanotechnology.

[40]  W. Daoud,et al.  Liquid single-electrode triboelectric nanogenerator based on graphene oxide dispersion for wearable electronics , 2019, Nano Energy.

[41]  A. Radenović,et al.  2D materials as an emerging platform for nanopore-based power generation , 2019, Nature Reviews Materials.

[42]  Bongkyun Jang,et al.  Graphene-based stretchable/wearable self-powered touch sensor , 2019, Nano Energy.

[43]  Q. Yin,et al.  A Novel Route to Manufacture 2D Layer MoS2 and g-C3N4 by Atmospheric Plasma with Enhanced Visible-Light-Driven Photocatalysis , 2019, Nanomaterials.

[44]  Bing Sun,et al.  2D Superlattices for Efficient Energy Storage and Conversion , 2019, Advanced materials.

[45]  J. Bell,et al.  Bioinspired 2D Nanomaterials for Sustainable Applications , 2019, Advanced materials.

[46]  Panpan Zhang,et al.  Mechanically strong MXene/Kevlar nanofiber composite membranes as high-performance nanofluidic osmotic power generators , 2019, Nature Communications.

[47]  Chao Li,et al.  Flexible perovskite solar cell-driven photo-rechargeable lithium-ion capacitor for self-powered wearable strain sensors , 2019, Nano Energy.

[48]  Q. Yan,et al.  Surface Modified MXene-Based Nanocomposites for Electrochemical Energy Conversion and Storage. , 2019, Small.

[49]  V. Berry,et al.  Graphene–semiconductor heterojunction sheds light on emerging photovoltaics , 2019, Nature Photonics.

[50]  Chunhua Yan,et al.  Ultrathin 2D Rare‐Earth Nanomaterials: Compositions, Syntheses, and Applications , 2019, Advanced materials.

[51]  Zhong Lin Wang,et al.  Symbiotic cardiac pacemaker , 2019, Nature Communications.

[52]  D. Solís-Ibarra,et al.  Two-Dimensional Halide Perovskites in Solar Cells: 2D or not 2D? , 2019, ChemSusChem.

[53]  Md Maksudul Hossain,et al.  Piezoresistive Graphene/P(VDF-TrFE) Heterostructure Based Highly Sensitive and Flexible Pressure Sensor. , 2019, ACS applied materials & interfaces.

[54]  Zhong Lin Wang,et al.  Quantifying the triboelectric series , 2019, Nature Communications.

[55]  D. Hewak,et al.  High-throughput physical vapour deposition flexible thermoelectric generators , 2019, Scientific Reports.

[56]  Ayesha Sultana,et al.  A Self-Powered Wearable Pressure Sensor and Pyroelectric Breathing Sensor Based on GO Interfaced PVDF Nanofibers , 2019, ACS Applied Nano Materials.

[57]  Hui Li,et al.  Templated growth of vertically aligned 2D metal–organic framework nanosheets , 2019, Journal of Materials Chemistry A.

[58]  W. Cao,et al.  2D MXenes: Electromagnetic property for microwave absorption and electromagnetic interference shielding , 2019, Chemical Engineering Journal.

[59]  Sang A Han,et al.  Piezo/triboelectric nanogenerators based on 2-dimensional layered structure materials , 2019, Nano Energy.

[60]  R. Arita,et al.  Giant thermoelectric power factor in ultrathin FeSe superconductor , 2019, Nature Communications.

[61]  J. Nampoothiri,et al.  Wearable, Flexible Ethanol Gas Sensor Based on TiO2 Nanoparticles-Grafted 2D-Titanium Carbide Nanosheets , 2019, ACS Applied Nano Materials.

[62]  Peng Li,et al.  Flexible MoS2 sensor arrays for high performance label-free ion sensing , 2019, Sensors and Actuators A: Physical.

[63]  Jianhua Zhang,et al.  A flexible pressure sensor based on an MXene–textile network structure , 2019, Journal of Materials Chemistry C.

[64]  M. Yousefi,et al.  Two-dimensional materials in semiconductor photoelectrocatalytic systems for water splitting , 2019, Energy & Environmental Science.

[65]  Liang Zhao,et al.  Applications of 2D MXenes in energy conversion and storage systems. , 2019, Chemical Society reviews.

[66]  Zhong Lin Wang,et al.  Standard and figure-of-merit for quantifying the performance of pyroelectric nanogenerators , 2019, Nano Energy.

[67]  Abhishek Kumar,et al.  Highly Improved Solar Energy Harvesting for Fuel Production from CO2 by a Newly Designed Graphene Film Photocatalyst , 2018, Scientific Reports.

[68]  S. Jang,et al.  Rapid Fabrication of Microporous BaTiO3/PDMS Nanocomposites for Triboelectric Nanogenerators through One-step Microwave Irradiation , 2018, Scientific Reports.

[69]  Ravinder Dahiya,et al.  Flexible self-charging supercapacitor based on graphene-Ag-3D graphene foam electrodes , 2018, Nano Energy.

[70]  Seongjun Park,et al.  Triboelectric Series of 2D Layered Materials , 2018, Advanced materials.

[71]  Hua Zhang,et al.  2D nanomaterials: beyond graphene and transition metal dichalcogenides. , 2018, Chemical Society reviews.

[72]  Ya Yang,et al.  Graphene–Polymer Nanocomposite‐Based Redox‐Induced Electricity for Flexible Self‐Powered Strain Sensors , 2018 .

[73]  Yang Yang,et al.  2D perovskite stabilized phase-pure formamidinium perovskite solar cells , 2018, Nature Communications.

[74]  Jun Di,et al.  Surface Defect Engineering in 2D Nanomaterials for Photocatalysis , 2018, Advanced Functional Materials.

[75]  Y. Xiong,et al.  2D Polymers as Emerging Materials for Photocatalytic Overall Water Splitting , 2018, Advanced materials.

[76]  Lain‐Jong Li,et al.  Two-dimensional materials with piezoelectric and ferroelectric functionalities , 2018, npj 2D Materials and Applications.

[77]  K. Krishnamoorthy,et al.  A High Efficacy Self‐Charging MoSe2 Solid‐State Supercapacitor Using Electrospun Nanofibrous Piezoelectric Separator with Ionogel Electrolyte , 2018 .

[78]  Shanshan Qin,et al.  Hybrid Piezo/Triboelectric‐Driven Self‐Charging Electrochromic Supercapacitor Power Package , 2018, Advanced Energy Materials.

[79]  Håkan Olin,et al.  Human body constituted triboelectric nanogenerators as energy harvesters, code transmitters and motion sensors , 2018 .

[80]  J. Zou,et al.  2D Porous TiO2 Single‐Crystalline Nanostructure Demonstrating High Photo‐Electrochemical Water Splitting Performance , 2018, Advanced materials.

[81]  Joshua Wilbur,et al.  Pyroelectric energy conversion with large energy and power density in relaxor ferroelectric thin films , 2018, Nature Materials.

[82]  M. Engel,et al.  Graphene-enabled and directed nanomaterial placement from solution for large-scale device integration , 2018, Nature Communications.

[83]  Faheem Khan,et al.  Direct-current triboelectricity generation by a sliding Schottky nanocontact on MoS2 multilayers , 2018, Nature Nanotechnology.

[84]  Conor P. Cullen,et al.  Induction of Chirality in Two-Dimensional Nanomaterials: Chiral 2D MoS2 Nanostructures. , 2018, ACS nano.

[85]  Tao Jiang,et al.  Toward the blue energy dream by triboelectric nanogenerator networks , 2017 .

[86]  Gang Zhang,et al.  Thermoelectric properties of two-dimensional transition metal dichalcogenides , 2017 .

[87]  Jinlan Wang,et al.  An organic-inorganic perovskite ferroelectric with large piezoelectric response , 2017, Science.

[88]  M. Tanemura,et al.  Temperature dependent diode and photovoltaic characteristics of graphene-GaN heterojunction , 2017 .

[89]  A. Kis,et al.  2D transition metal dichalcogenides , 2017 .

[90]  Yury Gogotsi,et al.  Two-dimensional heterostructures for energy storage , 2017, Nature Energy.

[91]  Quan-hong Yang,et al.  Opening Two‐Dimensional Materials for Energy Conversion and Storage: A Concept , 2017 .

[92]  Wei Hu,et al.  Thermionic Energy Conversion Based on Graphene van der Waals Heterostructures , 2017, Scientific Reports.

[93]  Han Lin,et al.  Two-Dimensional CH3NH3PbI3 Perovskite Nanosheets for Ultrafast Pulsed Fiber Lasers. , 2017, ACS applied materials & interfaces.

[94]  C. Bowen,et al.  Graphene Ink Laminate Structures on Poly(vinylidene difluoride) (PVDF) for Pyroelectric Thermal Energy Harvesting and Waste Heat Recovery. , 2017, ACS applied materials & interfaces.

[95]  M. Navaneethan,et al.  Ruthenium based metallopolymer grafted reduced graphene oxide as a new hybrid solar light harvester in polymer solar cells , 2017, Scientific Reports.

[96]  K. Pal,et al.  Effective energy harvesting from a single electrode based triboelectric nanogenerator , 2016, Scientific Reports.

[97]  Huiyu Yuan,et al.  Two‐Dimensional Metal Oxide and Metal Hydroxide Nanosheets: Synthesis, Controlled Assembly and Applications in Energy Conversion and Storage , 2016 .

[98]  Z. Yin,et al.  Interface engineering for highly efficient graphene-on-silicon Schottky junction solar cells by introducing a hexagonal boron nitride interlayer , 2016 .

[99]  A. Ferrari,et al.  Graphene-based mid-infrared room-temperature pyroelectric bolometers with ultrahigh temperature coefficient of resistance , 2016, Nature Communications.

[100]  D. Carroll,et al.  Metallic 1T phase MoS2 nanosheets for high-performance thermoelectric energy harvesting , 2016 .

[101]  N. Aluru,et al.  Single-layer MoS2 nanopores as nanopower generators , 2016, Nature.

[102]  Moon-Ho Jo,et al.  Thermoelectric materials by using two-dimensional materials with negative correlation between electrical and thermal conductivity , 2016, Nature Communications.

[103]  Fan Yang,et al.  In Vivo Self-Powered Wireless Cardiac Monitoring via Implantable Triboelectric Nanogenerator. , 2016, ACS nano.

[104]  Mohammad Ziaur Rahman,et al.  2D phosphorene as a water splitting photocatalyst: fundamentals to applications , 2016 .

[105]  Tao Jiang,et al.  Robust Thin Films‐Based Triboelectric Nanogenerator Arrays for Harvesting Bidirectional Wind Energy , 2016 .

[106]  Yuerui Lu,et al.  Two-Dimensional CH₃NH₃PbI₃ Perovskite: Synthesis and Optoelectronic Application. , 2016, ACS nano.

[107]  Pooi See Lee,et al.  Enhanced Piezoelectric Energy Harvesting Performance of Flexible PVDF-TrFE Bilayer Films with Graphene Oxide. , 2016, ACS applied materials & interfaces.

[108]  Zhenkun Guo,et al.  Band Gap Engineering in a 2D Material for Solar-to-Chemical Energy Conversion. , 2016, Nano letters.

[109]  Hongwei Zhu,et al.  Carbon/Silicon Heterojunction Solar Cells: State of the Art and Prospects , 2015, Advanced materials.

[110]  Ankanahalli Shankaregowda Smitha,et al.  Roll‐to‐Roll Green Transfer of CVD Graphene onto Plastic for a Transparent and Flexible Triboelectric Nanogenerator , 2015, Advanced materials.

[111]  Jun Kang,et al.  Tuning Carrier Confinement in the MoS2/WS2 Lateral Heterostructure , 2015 .

[112]  Yi Xie,et al.  Regulating the electrical behaviors of 2D inorganic nanomaterials for energy applications. , 2015, Small.

[113]  R. Ruoff,et al.  Graphene, related two-dimensional crystals, and hybrid systems for energy conversion and storage , 2015, Science.

[114]  Christopher R. Bowen,et al.  Pyroelectric materials and devices for energy harvesting applications , 2014 .

[115]  Zhiyong Wei,et al.  Mode dependent lattice thermal conductivity of single layer graphene , 2014 .

[116]  Zhong Lin Wang,et al.  Piezoelectricity of single-atomic-layer MoS2 for energy conversion and piezotronics , 2014, Nature.

[117]  Xiaonan Wen,et al.  Fully Enclosed Triboelectric Nanogenerators for Applications in Water and Harsh Environments , 2013 .

[118]  K. L. Shepard,et al.  One-Dimensional Electrical Contact to a Two-Dimensional Material , 2013, Science.

[119]  Ju-Hyuck Lee,et al.  Piezoelectric two-dimensional nanosheets/anionic layer heterojunction for efficient direct current power generation , 2013, Scientific Reports.

[120]  Hua Zhang,et al.  The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. , 2013, Nature chemistry.

[121]  E. Johnston-Halperin,et al.  Progress, challenges, and opportunities in two-dimensional materials beyond graphene. , 2013, ACS nano.

[122]  Alessandro Siria,et al.  Giant osmotic energy conversion measured in a single transmembrane boron nitride nanotube , 2013, Nature.

[123]  Zhong Lin Wang,et al.  Toward large-scale energy harvesting by a nanoparticle-enhanced triboelectric nanogenerator. , 2013, Nano letters.

[124]  Zhong Lin Wang,et al.  Flexible hybrid energy cell for simultaneously harvesting thermal, mechanical, and solar energies. , 2013, ACS nano.

[125]  G. Wiederrecht,et al.  Energy transfer from quantum dots to metal-organic frameworks for enhanced light harvesting. , 2013, Journal of the American Chemical Society.

[126]  Zhong Lin Wang,et al.  Progress in nanogenerators for portable electronics , 2012 .

[127]  Evan J. Reed,et al.  Intrinsic Piezoelectricity in Two-Dimensional Materials , 2012 .

[128]  Yanbing Jia,et al.  High-power density pyroelectric energy harvesters incorporating switchable liquid-based thermal interfaces , 2012, 2012 IEEE 25th International Conference on Micro Electro Mechanical Systems (MEMS).

[129]  Zhong Lin Wang,et al.  Flexible triboelectric generator , 2012 .

[130]  T. Ryhänen,et al.  Graphene for energy harvesting/storage devices and printed electronics , 2012 .

[131]  Yuyan Shao,et al.  Graphene-based electrochemical energy conversion and storage: fuel cells, supercapacitors and lithium ion batteries. , 2011, Physical chemistry chemical physics : PCCP.

[132]  C. Guo,et al.  Graphene Based Materials: Enhancing Solar Energy Harvesting , 2011 .

[133]  G Jan Harmsen,et al.  Electrical power from sea and river water by reverse electrodialysis: a first step from the laboratory to a real power plant. , 2010, Environmental science & technology.

[134]  Zhennan Gu,et al.  Low-cost and large-scale synthesis of graphene nanosheets by arc discharge in air , 2010, Nanotechnology.

[135]  Qingliang Liao,et al.  Synthesis and transverse electromechanical characterization of single crystalline ZnO nanoleaves. , 2010, Physical chemistry chemical physics : PCCP.

[136]  Jannik C. Meyer,et al.  The structure of suspended graphene sheets , 2007, Nature.

[137]  Zhong Lin Wang,et al.  Piezoelectric Nanogenerators Based on Zinc Oxide Nanowire Arrays , 2006, Science.

[138]  Dmitri O. Klenov,et al.  Thermal conductivity reduction and thermoelectric figure of merit increase by embedding nanoparticles in crystalline semiconductors. , 2006, Physical review letters.

[139]  C. Dekker,et al.  Streaming currents in a single nanofluidic channel. , 2005, Physical review letters.

[140]  Andre K. Geim,et al.  Electric Field Effect in Atomically Thin Carbon Films , 2004, Science.

[141]  J. Wilson,et al.  The transition metal dichalcogenides discussion and interpretation of the observed optical, electrical and structural properties , 1969 .

[142]  Graphene-Based Electrochemical Sensors for Biomolecules , 2019 .

[143]  S. Radhakrishnan,et al.  Graphene–Carbon Nanotubes Modified Electrochemical Sensors , 2019, Graphene-Based Electrochemical Sensors for Biomolecules.

[144]  Qiang Xu,et al.  Nanomaterials derived from metal–organic frameworks , 2018 .

[145]  Shubin Yang,et al.  Ultrathin two-dimensional metallic nanomaterials , 2017 .

[146]  D. Guyomar,et al.  Pyroelectric/electrocaloric energy scanvenging and cooling capabilities in ferroelectric materials , 2009 .