High frequency of C9orf72 hexanucleotide repeat expansion in amyotrophic lateral sclerosis patients from two founder populations sharing the same risk haplotype

[1]  P. Gleeson,et al.  C9ORF72, implicated in amytrophic lateral sclerosis and frontotemporal dementia, regulates endosomal trafficking , 2017, Human molecular genetics.

[2]  S. Saxena,et al.  C9ORF72 Regulates Stress Granule Formation and Its Deficiency Impairs Stress Granule Assembly, Hypersensitizing Cells to Stress , 2016, Molecular Neurobiology.

[3]  P. Andersen,et al.  Sequence variations in C9orf72 downstream of the hexanucleotide repeat region and its effect on repeat-primed PCR interpretation: a large multinational screening study , 2017, Amyotrophic lateral sclerosis & frontotemporal degeneration.

[4]  C. Shaw,et al.  C9ORF72 and UBQLN2 mutations are causes of amyotrophic lateral sclerosis in New Zealand: a genetic and pathologic study using banked human brain tissue , 2017, Neurobiology of Aging.

[5]  William T. Hu,et al.  Comparative analysis of C9orf72 and sporadic disease in an ALS clinic population , 2016, Neurology.

[6]  Jian-Fu Chen,et al.  A C9ORF72/SMCR8-containing complex regulates ULK1 and plays a dual role in autophagy , 2016, Science Advances.

[7]  A. Whitworth,et al.  The C9orf72 protein interacts with Rab1a and the ULK1 complex to regulate initiation of autophagy , 2016, The EMBO journal.

[8]  M. Oulad-Abdelghani,et al.  Loss of C9ORF72 impairs autophagy and synergizes with polyQ Ataxin‐2 to induce motor neuron dysfunction and cell death , 2016, The EMBO journal.

[9]  E. Kabashi,et al.  The most prevalent genetic cause of ALS-FTD, C9orf72 synergizes the toxicity of ATXN2 intermediate polyglutamine repeats through the autophagy pathway , 2016, Autophagy.

[10]  M. Smolka,et al.  The ALS/FTLD associated protein C9orf72 associates with SMCR8 and WDR41 to regulate the autophagy-lysosome pathway , 2016, Acta neuropathologica communications.

[11]  O. Uchitel,et al.  Analysis of C9orf72 in patients with frontotemporal dementia and amyotrophic lateral sclerosis from Argentina , 2016, Neurobiology of Aging.

[12]  B. Traynor,et al.  OPTN 691_692insAG is a founder mutation causing recessive ALS and increased risk in heterozygotes , 2016, Neurology.

[13]  Wei Song,et al.  Large C9orf72 repeat expansions are seen in Chinese patients with sporadic amyotrophic lateral sclerosis , 2016, Neurobiology of Aging.

[14]  M. Stepanova,et al.  C9ORF72 hexanucleotide repeat expansion in ALS patients from the Central European Russia population , 2015, Neurobiology of Aging.

[15]  G. Rouleau,et al.  Defining the genetic connection linking amyotrophic lateral sclerosis (ALS) with frontotemporal dementia (FTD). , 2015, Trends in genetics : TIG.

[16]  C. Shaw,et al.  Genetic analysis of amyotrophic lateral sclerosis in the Slovenian population , 2015, Neurobiology of Aging.

[17]  Hannah A. Pliner,et al.  Genetic architecture of ALS in Sardinia , 2014, Neurobiology of Aging.

[18]  A. Ludolph,et al.  Polymerase chain reaction and Southern blot-based analysis of the C9orf72 hexanucleotide repeat in different motor neuron diseases , 2014, Neurobiology of Aging.

[19]  Nick C Fox,et al.  Large C9orf72 hexanucleotide repeat expansions are seen in multiple neurodegenerative syndromes and are more frequent than expected in the UK population. , 2013, American journal of human genetics.

[20]  J. Clarimón,et al.  Analysis of the C9orf72 Gene in Patients with Amyotrophic Lateral Sclerosis in Spain and Different Populations Worldwide , 2013, Human mutation.

[21]  Michelle K. Lupton,et al.  The C9ORF72 expansion mutation is a common cause of ALS+/−FTD in Europe and has a single founder , 2012, European Journal of Human Genetics.

[22]  S. C. Chafe,et al.  Mutations in the Profilin 1 Gene Cause Familial Amyotrophic Lateral Sclerosis , 2012, Nature.

[23]  Janel O. Johnson,et al.  Frequency of the C9orf72 hexanucleotide repeat expansion in patients with amyotrophic lateral sclerosis and frontotemporal dementia: a cross-sectional study , 2012, The Lancet Neurology.

[24]  A. Al-Chalabi,et al.  Cognitive and clinical characteristics of patients with amyotrophic lateral sclerosis carrying a C9orf72 repeat expansion: a population-based cohort study , 2012, The Lancet Neurology.

[25]  Y. Pijnenburg,et al.  The clinical and pathological phenotype of C9ORF72 hexanucleotide repeat expansions. , 2012, Brain : a journal of neurology.

[26]  D. Neary,et al.  Distinct clinical and pathological characteristics of frontotemporal dementia associated with C9ORF72 mutations. , 2012, Brain : a journal of neurology.

[27]  S. Pereson,et al.  A C9orf72 promoter repeat expansion in a Flanders-Belgian cohort with disorders of the frontotemporal lobar degeneration-amyotrophic lateral sclerosis spectrum: a gene identification study , 2012, The Lancet Neurology.

[28]  A. Eisen,et al.  Clinical and pathological features of amyotrophic lateral sclerosis caused by mutation in the C9ORF72 gene on chromosome 9p , 2012, Acta Neuropathologica.

[29]  David Heckerman,et al.  A Hexanucleotide Repeat Expansion in C9ORF72 Is the Cause of Chromosome 9p21-Linked ALS-FTD , 2011, Neuron.

[30]  Bruce L. Miller,et al.  Expanded GGGGCC Hexanucleotide Repeat in Noncoding Region of C9ORF72 Causes Chromosome 9p-Linked FTD and ALS , 2011, Neuron.

[31]  David Heckerman,et al.  Chromosome 9p21 in amyotrophic lateral sclerosis in Finland: a genome-wide association study , 2010, The Lancet Neurology.

[32]  Nir Giladi,et al.  Genotype-phenotype correlations between GBA mutations and Parkinson disease risk and onset , 2008, Neurology.

[33]  Nir Giladi,et al.  The LRRK2 G2019S mutation in Ashkenazi Jews with Parkinson disease , 2007, Neurology.

[34]  M. Swash,et al.  El Escorial revisited: Revised criteria for the diagnosis of amyotrophic lateral sclerosis , 2000, Amyotrophic lateral sclerosis and other motor neuron disorders : official publication of the World Federation of Neurology, Research Group on Motor Neuron Diseases.